
Mutually Aware Prefetcher and
On-Chip Network Designs for Multi-Cores

Junghoon Lee, Hanjoon Kim, Minjeong Shin, John Kim, and Jaehyuk Huh

Abstract—Hardware prefetching has become an essential technique in high performance processors to hide long external memory
latencies. Inmulti-core architectureswith cores communicating througha shared on-chip network, traffic generated by the prefetchers can
account for up to60%of the total on-chip network traffic.However, thedistinct characteristics of prefetch traffichavenot beenconsidered in
on-chipnetwork design. In addition, prefetchershavebeenoblivious to thenetwork congestion. In thiswork,we investigate the interactions
between prefetchers and on-chip networks, exploiting the synergy of these two components in multi-cores. Firstly, we explore the design
space of prefetch-aware on-chip networks. Considering the difference between prefetch and non-prefetch packets, we propose a priority-
based router design, which selects non-prefetch packets first over prefetch packets. Secondly, we investigate network-aware prefetcher
designs. We propose a prefetch control mechanism sensitive to network congestion—throttling prefetch requests based on the current
network congestion. Our evaluation with full system simulations shows that the combination of the proposed prefetch-aware router and
congestion-sensitive prefetch control improves the performance of benchmark applications by 11–12% with out-of-order cores, and
21–22% with SMT cores on average, up to 37% on some of the workloads.

Index Terms—Computer architecture, on-chip networks, flow controls, muti-cores, hardware prfetcher, memory hierarchies

1 INTRODUCTION

AS external memory latencies have been orders of magni-
tude longer than on-chip cache latencies, hardware

prefetching techniques have been widely used in micropro-
cessors to hide long off-chip memory latencies. Recent high
performance processors often include one or more hardware
prefetchers to predict different data access patterns. Such
hardware prefetching techniques, in essence, speculatively
bring cachelines to the on-chip caches or separate buffers,
before memory instructions require the data during their
executions [30], [27], [33], [29].

Meanwhile, as the number of cores in processors increase,
on-chip networks with high bandwidth have emerged to
replace traditional buses or dedicated wires [11]. The on-chip
network is a resource shared by the cores and prefetchers in
the memory hierarchy. There have been many studies to
improve the overall available bandwidth of such interconnec-
tion networks and to make the networks resilient for tempo-
rary congestion on certain paths [19], [13].

However, there has been very little study on the interaction
between these two components–the prefetcher and the on-
chipnetwork. Prior studies to improveon-chip networkshave

not considered the distinct characteristics of network traffic
generated by prefetchers. Unlike request and data traffic for
instruction execution, prefetch traffic is essentially speculative
and can be useless if prediction is incorrect. Even for success-
fully predictedprefetch requests, the data canbe actually used
hundreds or thousands cycles after the initiation of prefetch
requests. Even though there have been several studies that
have looked at prioritized traffic or prioritized arbitration and
its impact on on-chip network performance [3], [22], [7], [28],
no prior work have investigated the impact of prioritized
arbitrationwhen consideringprefetch traffic and its impact on
overall performance.

In addition to the current prefetch oblivious network de-
signs, conventional prefetchers are also insensitive to the status
of networks. Prefetchers increase on-chip traffic significantly
with prefetch requests and data, but they do not consider the
negative effect of the increased on-chip network traffic.
On-chip network is a shared resource among the cores on a
chip, and the congestion caused by a core can affect the
performance of other cores significantly. When the network
is congested, speculative prefetches can degrade overall per-
formance by further increasing traffic. Although Ebrahimi
et al. investigated the effect of prefetching on other shared
resources such as memory bandwidth [16], the importance of
mutual awareness between prefetchers and on-chip networks
has been largely neglected so far.

In this paper, we investigate how the two components, on-
chip networks and hardware prefetchers, affect each other,
and explore the design space ofmutually aware networks and
prefetchers. To the best of our knowledge, this is one of the
first studies to investigate the impact of prefetching on on-
chip networks and evaluate the interactions between on-chip
networks and prefetchers. First of all, we study network
designs partitioned for twodistinct traffics generated by cores
and prefetchers. Our results show that partitioning network

• J. Lee, H. Kim, J. Kim, and J. Huh are with the Department of Computer
Science, Korea Advanced Institute of Science and Technology (KAIST), 335
Gwahak-ro (373-1Guseong-dong), Yuseong-gu,Daejeon 305-701, Republic
of Korea. E-mail: {junghoon.lee, hanj, jjk12, jhhuh}@kaist.ac.kr

• J. Kim is also with the Division of Web Science and Technology, Korea
Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro
(373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea.

• M. Shin is with LG Electronics Inc., LG Twin Towers 20, Yoido-dong,
Youngdungpo-gu, Seoul 150-721, Korea. E-mail: minjeong.shin@lge.com

Manuscript received 03 June 2012; revised 04 Jan. 2013; accepted 16 Apr. 2013.
Date of publication 25 Apr. 2013; date of current version 07 Aug. 2014.
Recommended for acceptance by R. Gupta.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.99

2316 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

resources to avoid interference between the two types of
traffic can actually degrade the overall performance.

Instead of partitioning network resources, we propose
prefetch-aware on-chip network. We first propose a simple
source-levelprioritization (SP) ofdemandrequests overpend-
ingprefetch requests. In addition,wepropose apriority-based
arbitration mechanism for routers, called Traffic-aware Priori-
tized Arbiter (TPA), which provides a higher priority to
non-prefetch packets compared with prefetch packets. The
proposed mechanisms exploit the available slack between
when the prefetch is issued andwhen the actual prefetch data
is accessedby the core. PrioritizationwithSPandTPAreduces
the network latency for non-prefetch packets, which is more
critical for performance than prefetch packets.

To complement the prefetch-aware network design, we
propose a prefetch control mechanism, which adjusts the
prefetch traffic based on the status of networks. The mecha-
nism, called Traffic-aware Prefetch Throttling (TPT) throttles
prefetch generations at the hardware prefetchers, depending
on network congestion. Unlike the conventional prefetchers,
which issue prefetch requests without considering network
congestion, the mechanism identifies congested paths and
dynamically adjusts the aggressiveness of prefetchers. Our
results show that combination of prefetch-aware on-chip
network and network-aware prefetcher can improve overall
performance by up to 37%.

We evaluate the proposed mechanisms with a 16-core
multi-core model simulated with a full system simulator.
To assess the effectiveness of our designs with different
network requirements, we use two core models, single-
threaded out-of-order and dual-threaded simultaneous mul-
tithreading (SMT) cores, and two cache organizations, a
NUCA-style shared L2, and private L2s with a shared L3.

In the rest of this paper, we first show the impact of
prefetching on interconnection networks in Section 2. In
Section 3, we propose prioritization techniques including
prefetch-aware routers. In Section 4, we describe prefetch
throttling mechanisms, which consider network congestion.
We present prior work on prefetching and interconnection
networks in Section 6, and conclude the paper in Section 7.

2 MOTIVATION

2.1 Prefetching Techniques
Hardware prefetchers predict data access patterns, and issue
memory requests speculatively. In this paper, we use a com-
monly used prefetching technique based on stream detection,
but the proposed techniques in this paper can be used with
any other types of prefetchers. A stream prefetcher prefetches
non-unit stride cache lines by dynamically tracing streams
[27], [33]. When a cache miss occurs, the prefetcher creates a
stream entry with a limited training window. If a subsequent
miss occurs within the limited window, the stream entry is
trained with the address difference between the current miss
address and the prior address stored in the stream entry.Once
a stream entry is trained, the stream prefetcher generates one
or more prefetch requests. The number of prefetch requests
generated by a trigger of the stream prefetcher is called the
degree of prefetch. With multiple stream entries, a stream
prefetcher can detect multiple streams simultaneously. The
stream prefetcher used in this paper has the degree of four

[33]. In addition to the base stream prefetcher, we also use a
combined prefetcher, which extends a stream prefetcher with
a next line prefetching [29], [30]. The next line prefetcher
simply issues memory requests for the next block address
from the current miss address. The combined prefetcher
generates prefetch requestsmore aggressively than the stream
prefetcher.

The stream and combined prefetchers used in this paper
show better performance on all workloads, compared to
without the prefetchers (Fig. 1). In addition, Table 3 shows
the accuracy and coverage of prefetchers with each applica-
tion for the performance benefit.

2.2 Methodology
For the experimental results, we use the Simics full system
simulator with the GEMS timing model [23], [24] and the
Garnet on-chip network model [4]. We use two core models
with different traffic behaviors in our evaluation–a 4-way out-
of-order core (OoO), and dual-threaded simultaneous multi-
threading (SMT) as described in Table 1.

We use two shared cache models, shared–L2 and
shared–L3, to evaluate the proposed mechanism in cache
architectures with different traffic behaviors. In shared–L2,
the L2 cache is a shared L2 with 16 1 MB banks, with
addresses statically mapped to each bank. For the cache
coherence among L1 caches, the model uses a directory-
based protocol. In shared–L3, the L2 cache is a private 256KB
L2 for each core, and the L3 cache is a shared L3with 16 2MB
banks. In general, shared–L2 generates more traffic than
shared–L3, as in shared–L3, private L2s filter out requests
out of each tile. For thememory,we use 4memory controllers
at each corner of a chip and a detail memory model as DDR3
shown in Table 1.

For the baseline on-chip network model, we use a 4×4 2D
mesh topology. The other detailed configurations are shown
in Table 1. The two prefetchers we use in our evaluation are a

Fig. 1. Speedups with prefetching: ideal vs. baseline.

LEE ET AL.: MUTUALLY AWARE PREFETCHER AND ON-CHIP NETWORK DESIGNS FOR MULTI-CORES 2317

streamprefetcherwith a streamdegree of four (stream–4) and
a combinedprefetcherwhich adds next-line prefetching to the
stream-4 prefetcher (combined). In shared–L2, prefetchers
are trained by L1 miss requests, and issue prefetch requests
to the shared L2 cache. Prefetched data fill the requesting L1
cache. In shared–L3, prefetched data fill only the requesting
private L2 cache, not to corrupt the L1. Due to space con-
straint, we focus on the results from stream–4, except for the
performance results of proposed techniques, but results from
combined showed similar results.

We selected our application mixes to represent both vari-
ous prefetch effects and traffic amounts, as shown in Table 2.
For the OoO model, 16 applications are used with four
instances of each application in mix-1 to mix-4, with two
instances of each application in mix-5 to mix-8, and with one
instance of each application inmix-9 andmix-10. For the SMT
model, 32 applications are used with a double of total appli-
cations employed on a workload in the OoO model. In
addition, we pinned two different applications, an odd and
an even index applications, on a core for the SMT model.

We denote prefetch packets as the request and data packets
for prefetch requests and data responses. Packets other than
prefetch packets in the on-chip networks are classified as
demand packets, which include request and data response
packets. The weighted speedup metric is used as the perfor-
mance metric which represents the average speedup from
each applications compared to a baseline system with pre-
fetching enabled.

2.3 The Effect of Prefetching on Networks
In this section, we show how much network traffic prefetch-
inggenerates, andhowthe limitednetworkbandwidth affects
the effectiveness of prefetching. We also show slack exists
between the time when prefetch is issued and the time when
the subsequent demand access to the prefetched cache-lines
occurs.

Prefetch vs. Demand Packets: The prefetch traffic ac-
counts for a significant portion of the overall traffic in on-
chip networks. Table 4 shows the ratios of prefetch packets

over the total packets. In shared–L2, prefetch packets account
for 49% of the total packets with OoO cores. Using
SMT cores increases the ratio of prefetch packets further, to
56% with stream–4. In shared–L3, prefetch packets account
for 31% and 33% for OoO and SMT cores respectively. These
results show that a significant portion of on-chip network
traffic comes from the prefetcher and the impact of prefetch
traffic on overall performance needs to be properly
considered.

TABLE 1
System Configuration

TABLE 2
Application Configurations

TABLE 3
Prefetch Accuracy and Coverage on Shared-L2 with

Stream-4 Prefetcher

2318 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

The Effect of Limited Network Bandwidth: Since pre-
fetchers generate a significant amount of additional traffic,
limited network bandwidth affects the effectiveness of pre-
fetchers. Fig. 1 presents the speedup of using prefetchers with
abaselinenetwork andan idealnetwork.An ideal networkhas
the same zero-load latency as the baseline 2D-mesh network
but assume a fully-connected topology with sufficient link
bandwidth to inject an entire packet in a single cycle. Each bar
represents the speedup of an execution with prefetching on
ideal and baseline network compared to an executionwithout
prefetching on baseline network.

With the ideal network, prefetching improves overall
performance for both OoO and SMT cores. On average, in
shared–L2, the stream–4 prefetcher can improve the overall
performance by 39% for out-of-order cores, and 45% for SMT
cores. However, with the baseline networkmodel, the perfor-
mance improvements drop significantly. With out-of-order
cores, the performance improvement from the stream-4 pre-
fetcher is reduced by approximately 30%.With SMT cores, the
negative effect of limited network bandwidth is much more
severe on the performance improvements by prefetching. The
results indicate the effectiveness of prefetchers is not only
dependent upon the capability of prefetchers, but also the
available network bandwidth which must transfer prefetch
packets effectively without delaying critical demand packets.

Time Slack for Accessing Prefetched Data: One of the
distinct characteristics of prefetch traffic is that packet latency
may not be as critical as demand traffic, since prefetched data
are not used by the core immediately. The cumulative distri-
bution of the slack is shown in Fig. 2,which represents the time
between the initiation of a prefetch request and the data access
from the core for the prefetched data.

Fig. 2 shows that themajority of prefetches havemore than
200 cycle time slack until the prefetch data are used by the
core, although each mix may have a different slack distribu-
tion. The slack represent how much a prefetch request can be
delayed without affecting the overall performance–thus, pro-
vide an opportunity to reduce the negative effect of prefetch
packets on the overall performance by prioritizing demand
packets over prefetch packets.

2.4 Partitioned Networks for Prefetch
Resource partitioning can potentially eliminate possible neg-
ative interferences between prefetch and demand traffics.
In this section, we explore partitioned networks where

prefetch traffic is differentiated from demand traffic. In the
baseline architecture, we assume a mesh network where the
network resources–mainly buffers (virtual channels (VCs)
[12]) and channels–are shared between the prefetch and
demand packets.

We evaluate the following prefetch-aware partitioned net-
work architectures in this section:

Partitioned VC: We isolate the buffer resources (or VCs)
between the two types of traffic while still sharing the
channel resource (Fig. 3(b)). The VCs in each router are
dedicated to either prefetch packets or demand packets
while the channel bandwidth is shared between the two
types of packets.
PartitionedNetwork: Instead of partitioning theVCs, the
channel bandwidth can be partitioned. The two types of
traffic are isolated by channel slicing [11] or creating two
separate networks as shown in Fig. 3(a). Prefetch packets
are only allowed to traverse in one network while de-
mand packets utilize the other network. Compared to the
baseline network, we maintain the same bisection band-
width to provide a fair comparison.

In Fig. 4, we compare the performance of partitioned
virtual channels and networks against the baseline on-chip
network with prefetching enabled. VC() in Fig. 4(a) de-
notes the partitioned virtual channels with VCs used by
demand traffic and VCs used prefetch traffic. In VC(2:2) and
VC(3:1), the total number of VCs is the same as the baseline (4
VCs), but the VCs are partitioned to 2:2 or 3:1 ratio. In VC(x,y)
where and is the total number of VCs, the partitioned
VCs are shared buffer organization as VCs are shared
between deand and prefetch traffic while VCs are
dedicated for demand traffic. VC(2:2) exhibits a slightly lower
performance than the baseline, but VC(3:1) andVC(4:1) result

TABLE 4
The Ratios of Prefetch Packets Over Total Packets

Fig. 2. Cumulative distributions of prefetch slack cycles with out-of-order
cores.

Fig. 3. (a) Partitioned network. (b) Partitioned virtual channel router
microarchitecture.

LEE ET AL.: MUTUALLY AWARE PREFETCHER AND ON-CHIP NETWORK DESIGNS FOR MULTI-CORES 2319

in performance losses by 3–4% on average. Since the prefetch
packets account for one or two thirds of the total packets as
shown in Table 4, providing only one virtual channel for
prefetch traffic results in non-negligible performance losses.
Limiting VCs for prefetch to 3, 2, or 1 channels even if the
channels for demand traffic is fixed to 4, also results in
performance losses. These results indicate that bursts of traffic
from prefetch or demand requests may often do not occur
simultaneously, and thus sharing virtual channels and being
able to use the entire VCs for bursty prefetch traffic provide
better performance than partitioning VCs.

Fig. 4(b) presents the performance comparison of various
partitioned network configurations. In the figure, BW()
stands for partitioned networks with channel bandwidth
for demand traffic and for prefetch traffic. Note that
BW(8:8) has twice bandwidth than the baseline network with
8B link (BW8). Partitioningnetworks fordemandandprefetch
results in much worse performance than the baseline unified
networks with the same link bandwidth, losing 10% perfor-
mance with BW(4:4), 17% with BW(6:2), and 27% with
BW(2:6). As expected, reducing the channel bandwidth for
demand traffic further reduces the overall performance. Prior
work [37], [32] has partitioned on-chip networks intomultiple
networks to separate different types of traffic. However, our
results show that providing such partitioning across prefetch
and non-prefetch packets can significantly degrade overall
performance.

In Fig. 5(a), we compare the ratio of prefetch and demand
packet latencies for BW(4,4) and the baseline networks
(BW8). The results show how both prefetch and demand
packet increase in latency with partitioned network
(BW(4,4)), compared with BW8, some of which is caused by
the additional serialization latency of the narrower network.
Fig. 5(b) shows the utilization of networks for BW(4:4) and
the baseline (BW8). The figure shows that partitioning
networks results in lower utilizations of links than the
unified networks.

In this section, we evaluated various fixed partitioning
schemes for bandwidth and VCs, but the results showed that
such fixed partitioning of networks or VCs across the two
types of traffic did not provide any performance benefit
compared with the baseline architecture. Based on this obser-
vation, we focus on improving the network performance by
prioritizing packets over the same unified networks in the
next section.

3 PREFETCH-AWARE NETWORK

As discussed in Section 2.4, partitioning networks or virtual
channels for demand or prefetch traffic leads to performance
losses. In this section, instead of partitioning networks which
cannot be resilient for bursty traffic of both types, we use
prioritization based on packet type, while the networks re-
sources are shared. We first propose a simple source-level
prioritization, which can send demand packets first even
though older prefetch packets are pending. In addition, we
propose traffic-aware prioritized arbitration (TPA), which
prioritizes packets in the routers. Finally, we also evaluate
two possible further optimizations on TPA, multi-level TPA
and dynamic priority boosting.

3.1 Source-Level Prioritization (SP)
The most simple prioritization mechanism for demand re-
quests over prefetch requests is to re-order the requests at the
source node. Request packets can be pending at the source
node, if the router of the source node can no longer accept a
new packet. As soon as the router has a free buffer, source-
level prioritization (SP) enforces demand packets to be in-
jected to the router even if older prefetch packets exist. This
mechanism does not require any change in the network and
requires only a minor change in the request selection logic of
the cache controller.

Fig. 4. Performance of partitioned networks.

Fig. 5. Avg. latency & util. with partitioned networks.

2320 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

3.2 Traffic-aware Prioritized Arbiter (TPA)
The second technique prioritizes packets during transmission
through the on-chip networks. Instead of traffic-oblivious
arbitration such as round-robin arbitration or age-based arbi-
tration,wepropose traffic-awareprioritized arbitration (TPA)
where demand packets are prioritized over prefetch packets.
To provide support for TPA, each packet injected into the
network is classified as either a demand packet or a prefetch
packet. An additional bit in the packet header is used to
differentiate between the two types of packets. For multi-flit1

packets such as cache line data packets, each flit does not
need to be appended with this information but only the head
flit. The packet classification can be stored in the state infor-
mation associated with each virtual channel–similar to how
routing information is only maintained by the head flit.

In our baseline on-chip network, two-phase round-robin
arbitration is used–arbitration is first done among all the
virtual channels at the input and then, arbitration is done at
the output port among the input ports, similar to iSLIP [25]
algorithm. With TPA, round-robin arbitration is first done
among all the demand packets. If there are no demand
packets, then round-robin arbitration is done among the
prefetch packets. To minimize the impact of arbitration on
the critical paths, the arbiter can be duplicated as shown in
Fig. 6 with a demand packet arbiter and a prefetch packet
arbiter. If there are one ormore demandpackets, the output of
the demand arbiter is used; otherwise, the result of the pre-
fetch arbiter is used. Prior work has shown that the area and
power impact of arbiter in on-chip network is small [35], [28]–
thus, adding an extra arbiter hasminimal impact on the cost of
an on-chip network router. To prevent priority inversion (i.e.,
demand packets being buffered behind prefetch packets), we
only allocate a VC to a new packet once the previous packet
has departed the downstream router, when a tail-credit is
received [11].

With fixed prioritized arbitration, fairness can be an issue
as demand packet always receives priority over prefetch
packets and starve prefetch packets. A techniques can be
used to prevent starvation–i.e., create a threshold () and if
a prefetch packet has not been serviced for cycles, the
prefetch packet is upgraded and receive priority. In addition,
because of the slack available in the prefetch packets as
described earlier in Section 2, the increase in prefetch latency
does not negatively impact overall performance.

3.3 Further Optimizations on TPA
In addition to SP and TPA, we evaluate two schemes for
further optimizations. However, as shown in Section 3.4, the
following two logical extensions to TPA and SP, do not
provide performance benefits enough to justify the added
complexity. We report the negative results as part of our
design space exploration.

Multi-level TPA (mTPA):Thefirst optimization for TPA is
to support multiple priorities for prefetch traffic. Multi-level
TPA divides prefetch priority into two levels, urgent prefetch
and less urgent prefetch packets. As proposed by Das et al.
[14], the different behaviors of applications affect the criticali-
ty of network packets for the applications, and thus, some
applications can benefit from prioritization at routers. Simi-
larly, for prefetch traffic, to find the best parameter to deter-
mine the priority level for prefetch traffic, we have evaluated
several parameters, time slack from prefetch to demand, L1
miss per 1K instructions, and L2 miss per 1K instructions.
Among the three parameters, using L1 miss per 1K instruc-
tions results in the best performance, which is consistent with
the finding from Das et al.

Dynamic Priority Boosting (catch-up): The second opti-
mization for TPA is to boost the priority of packets dynami-
cally.When the slack from aprefetch issue to a demand access
to the same cacheline is short, the demand access may occur
while the prefetch packet is in the networks, or waiting for the
data response from the memory. In such cases, the prefetch
packets must be returned as soon as possible, with the same
priority as demand traffic.We evaluate the possible benefit of
such dynamic priority boosting (catch-up) with an ideal im-
plementation. In the ideal implementation, as soon as a
demand miss occurs on the same cacheline as an outstanding
prefetch request, subsequent packets serving the prefetch are
upgraded to demand packets.

3.4 Results
Fig. 7 presents the weighted speedups normalized to the
baseline for four configurations, SP, TPA, mTPA, and
mTPA catchup. Each configuration includes the previous

configurations. For example, TPA includes SP.
Firstly, source-level prioritization (SP) provides significant

performance improvements, even if it requires no change in
the networks, but only aminor change in the cache controller.
For the out-of-order, SP improves the baseline in performance
by 6% and 2% for shared–L2 and shared–L3 with stream-4
prefetcher, and by 7% and 4% with combined prefetcher. TPA
further improves the performance significantly. In the case of
using stream-4 prefetcher, TPAwith SP improves the baseline
in performance by 7% for the Out-of-order configuration and
13% for the SMT configuration in shared–L2, and by 3% and
6% in shared–L3. Also, in the case of using combined pre-
fetcher, TPA with SP also improves the baseline by 9%, 10%
for Out-of-order and SMT with shared–L2, and by 5% and
10% for ones with shared–L3. The performance improve-
ments by TPAwith SP over the baseline can be as high as 25%
for some of mixes (mix-1 and mix-2) in SMT. Generally, the
benefit of TPA is higher in the SMT than in the Out-of-order
core model, since the prefechers operated by multi-threads
in SMT core model generate much more traffic than in
Out-of-order core model. Also, TPA can get more benefit of

Fig. 6. TPA arbiter microarchitecture.

1. Packets in on-chip networks are often partitioned into one or more
flits [11], a unit of flow control.

LEE ET AL.: MUTUALLY AWARE PREFETCHER AND ON-CHIP NETWORK DESIGNS FOR MULTI-CORES 2321

performance in shared–L2 relatively where volume of traffic
movements is high, than shared–L3. Especially, mix-1 and
mix-2 with using stream-4 prefetcher have high performance
gap between in shared–L2 and in shared–L3.

Multi-level TPA (mTPA) does not provide much of im-
provement in overall performance. However, the mTPA im-
proves several applications in both of the out-of-order core
and the SMT core models with stream-4 and combined pre-
fetcher. Dynamic priority boosting (catchup) also improves
the overall performance slightly by 1–2% compared to TPA.

The two optimizations, although they may improve per-
formance for some applications, generally provide relatively
low performance benefits. Table 5 shows that there is not
much volume of in-flight prefetch packets cores request in on-
chip networks. This indicates that the catchupmechanismhas
little chance to boost prefetch packets, and can not improve
performance in spite of our ideal implementation.

Source-level prioritization (SP) improves the overall per-
formance significantly with very low extra hardware costs.
TPAwith amodest increase of complexity in routers provides
further improvements. However, the relatively low perfor-
mance improvements with mTPA and dynamic priority
boostingmay not justify extra hardware and design complex-
ity to support them.

4 NETWORK-AWARE PREFETCHERS

In this section, we investigate network-aware prefetch de-
signs, which can adjust the aggressiveness of prefetchers
based on the levels of network congestion. We propose
traffic-aware prefetch throttling (TPT),which detects network
congestion dynamically, and throttles prefetch requests, if the
networks become congested. TPT tracks congested paths on
networks, and if generated prefetch requestsmust go through

Fig. 7. Performance with prefetch-aware networks.

2322 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

one of the congested paths, the requests are throttled.
To detect congested paths, the throttling mechanism has a
congestion tracking component at each node to trace the
network congestion level to every destination node.
Section 4.1 describes the congestion detection mechanism
used in this paper. Section 4.2 proposes network-aware throt-
tling mechanisms for prefetchers. Section 4.3 presents the
experimental results for network-aware prefetchers.

4.1 Estimating Network Congestion
To support traffic-aware prefetch throttling (TPT), each node
tracks the congestion status of paths to the other nodes. TPT
measures congestion status between a source and destination
pair, instead of tracking congestion status at each link.
A congested path from a source to a destination is a path in
networks which has much longer packet latencies than the
unloaded latency from the same source to destination pair.
Such congested paths can change dynamically as application
phases change and even the operating system change the
scheduling of applications, migrating a thread to a different
physical core.

In this paper, we use a straightforward mechanism to
measure the congestion status for each path. Each packet
carries a time-stamp which is set when the packet leaves the
source node. Checking the time-stamp in packets, the receiv-
ing node can determine the transfer latency for each packet.
If the latency of the arrived packet is much larger than the
unloaded latency from the source, we designate the path as a
congested one.

Fig. 8 shows the cumulative distribution of normalized
packet latencies against the unloaded latency. For example,
2.0 in the x-axis represents that the packet latency is twice
longer than the unloaded latency. For the 10 benchmark
mixes, the distributions are very similar. About 60% of the
total packets arrive at destinations with a latency less than
twice of the unloaded latency.We also use a separate network
simulation with random patterns to confirm that the network
saturates when the average latency is doubled. Based on the
observations, we use a multiplier of two from the unloaded
latency as the threshold to determine a congested path.

Fig. 9 presents average latencies with increasing injection
rates, measured from a separate network simulator modeling
the same 4x4 mesh networks with a random access pattern.
The dotted line is when the average latency is twice of the
unloaded latency. The figure shows that the dotted line
(2x unloaded latency) marks an injection rate just before the
networks are saturated.

4.2 Throttling Prefetch Requests
Fig. 10 depicts the overall architecture of TPT. For each core,
there is an N-bit vector (congestion status vector) to mark
whether each path to another node is congested or not. N is
the total number of nodes in the networks. When the pre-
fetcher generates a prefetch, it checks whether the path to the
target node is congested. If the path to the destination is
congested, the prefetch request is throttled. The congestion
status for each destination can be set in various ways, and we
evaluated several policies to set the entry.

For a prefetch request, there are four different paths which
may be involved during the process of the request, as shown
in Fig. 10. (1) The prefetch request is transferred to the
corresponding L2 bank node. (2) If the request is an L2 miss,
it is transferred to the correspondingmemory controller node.
(3) Thedata response is transferred to theL2bank. (4) Thedata

TABLE 5
Ratio of Catch-Up Packets in Total Packets (Shared-L2, Stream-4)

Fig. 8. Packet latency distribution.

Fig. 9. Packet latency analysis.

Fig. 10. TPT architecture.

LEE ET AL.: MUTUALLY AWARE PREFETCHER AND ON-CHIP NETWORK DESIGNS FOR MULTI-CORES 2323

response is transferred to the requesting core. We have eval-
uated various combinations of path congestion status to set
the congestion status entry for each node.

Fig. 12(a) shows theperformance of TPTwith four different
policies. To find the best policy, for the experiments, we
assume that the core node is ideally aware of the actual packet
latencies for all paths, without any extra overhead. Also, the
core node is assumed to know whether a request will be a hit
or miss in the L2. The first policy sets the congestion entry to
an L2 bank node, if the path from the L2 bank node to the core
node is congested (path (4)). The second policy sets the entry
to an L2 bank, if both paths, from the L2 bank node to the core
node, and from the memory controller node to the L2 node(if
the recent request is a L2 miss), are congested (path (3) and
(4)). The third policy sets the entry, if the path from the core to
the L2 node is congested (path (1)). The fourth policy sets the

entry, if both of the paths from L2 node to the memory node,
and the core to the L2 node are congested (path (1) and (2)).

The results shows the performance is not very sensitive to
the different policies, except for mix-3, but using the both of
paths from the core to the L2 node and from the L2 node to the
memory controller node (path(3) and path(4)) result in the
best performance on average. Even though considering
the both paths has the best performance, we choose the first
policy (path(4)) for detecting congestion path becuase collect-
ing that path information requires the least overhead that the
core node just needs to check the latencies of packets arriving
from each L2 bank node. In the rest of paper, each node
updates its congestion status vector by checking the latencies
of packets arriving from the other nodes.

The network congestion status for each path will change
dynamically. To use the latest congestion information,

Fig. 11. Performance with network-aware prefetchers.

2324 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

TPT resets the congestion status vector in each core periodi-
cally.Wehave evaluatedvarious reset periods from128 cycles
to 2048 cycles. Fig. 12(b) shows the performance of TPT with
various reset periods. As shown in the figure, the shortest 128
cycles results in the best performance. This result indicates
that congestion status changes in relatively short periods, and
TPT must track such short-term fluctuations of network
congestion. Using the best reset period, we reset the conges-
tion status vector every 128 cycles, for the experiments in the
rest of this paper.During the reset period, the status entry for a
destinationnode is set onlywhen at least a packet arrives from
the node, and the latency is twice longer than the unloaded
latency of the path.

Traffic-aware prefetch throttling (TPT) stops issuing a
prefetch request when the prefetch request should be sent to
a destination, to which the path is currently marked as a
congested path. The rationale behind TPT is that speculative
prefetches may degrade the overall performance by injecting
extra traffic when the networks are already saturated for the
paths. If a path becomes congested, prefetch requests, which
are less critical than demand packets, are throttled by the
prefetchers.

However, the base TPT mechanism considers only the
network status, but does not distinguish how useful prefetch-
ers are. TPT with accuracy (TPT-A) may potentially enhance
TPT by determining the prefetch throttling decision not only
by the network congestion, but also with the accuracy of
prefetchers. To implement TPT-A, we assume an extra bit in
the tag to mark a prefetched block, and if the data are used by
the core, the bit is cleared. By tracking the number of pre-
fetches issued, and the number of the first use of prefetched
blocks, we approximately measure the current accuracy of
prefetchers. With TPT-A, if the prefetch accuracy of the core
node is higher than a threshold, the prefetch request will be
sent to the L2 bank node, even if the path is congested.

4.3 Results
In this section, we evaluate the throttling mechanisms com-
bined with TPA. Fig. 11 presents the weighted speedups
normalized to the baseline. The figure shows three bars, TPA
only, TPA+TPT, and TPA+TPT-A configurations. For the
TPT-A configuration, we have evaluated various accuracy
thresholds, and used the best one.

TPT improvesTPAsignificantly for bothout-of-order cores
and SMT cores. For out-of-order cores, on average, TPT
improves TPA by 11% and 4% for shared–L2 and
shared–L3 with stream-4 prefetcher, and by 12% and 5% for
ones with combined prefetcher respectively. In essence, TPT
becomes much more effective with SMT cores, as SMT cores
generate significantly more prefetch traffic than out-of-order
cores. In SMT cores, TPT improves TPA by 21% and 11% for
shared–L2 and shared–L3 with stream-4 prefetcher, and also
by 21% and 11% for ones with combined prefetcher.

TPT-A exhibits relatively low performance improvements
over TPT. Fig. 13 presents the performance of TPT-A with
various accuracy thresholds.

In Fig. 13(a), based onOut-of-order coreswith the stream-4
prefetchers, TPT-A improves TPT only for a small subset of
mixes (mix-1, mix-2, mix-3 and mix-9), and slightly degrades
TPTon the others (mix-7,mix-10). The result is consistentwith
the result in Fig. 11. Similar to in Out-of-order cores, TPT-A
also shows slight performance improvements for several
mixes (mix-1,mix-2, mix-3 andmix-6) in SMT cores, as shown
in Fig. 13(b). In addition, TPT-A can complement TPT when
TPT hasworse performance than TPA in a certain case, due to
a conservative threshold to throttle prefetch requests, such as
the case of mix-2 in shared–L2 and Out-of-order core with
stream-4 prefetcher. Such large improvements for somemixes
(mix-3 and mix-9 in shared–L2 and Out-of-order core with
stream-4 prefetcher) show the potential benefits offine-tuning
TPT by considering other factors, such as accuracy and
congestion levels. Optimizations of TPT with other para-
meters will be our future work.

Fig. 12. Selecting TPT parameters.

Fig. 13. TPT-A with various accuracy thresholds.

LEE ET AL.: MUTUALLY AWARE PREFETCHER AND ON-CHIP NETWORK DESIGNS FOR MULTI-CORES 2325

Comparing TPT to network-unaware throttling: Pre-
fetchers can throttle prefetch requests only by the current
accuracy without considering the network status. In such
network-unaware throttling, prefetchers are throttled only
by locallymeasuredaccuracy information. Fig. 14presents the
performance with the accuracy-only based throttling with
various accuracy thresholds. The figure indicates that net-
work-aware throttling by TPT significantly out-performs
throttling based only on the accuracy of prefetching for most
of the mixes. The result indicates that the aggressiveness of
prefetchers must be sensitive to traffic on the networks.
Throttling traffic without distinguishing demand and pre-
fetch packets has a significant negative impact. Fig. 15 com-
pares TPT with a prefetch-unaware throttling. The prefetch-
unaware throttling uses the same threshold as TPT, but
throttle both demand and prefetch requests. As shown in the
Fig. 15, throttling both requests solely based on network
status can degrade performance.

5 SUMMARY

Performance: In summary, Fig. 16 presents the average
speedups with the techniques discussed in this paper. SP
provides consistent improvements for both of the out-of-
order and SMT cores. TPA is also effective for both cores.
The effectiveness ofTPT ismuchhigher in SMTcores thanout-

of-order cores, as networks tend to be congestedmore often in
the SMT configuration. In case of using stream-4 prefetcher, a
combination of SP, TPA, and TPT can improve the baseline in
performance by 10% in the Out-of-order model, and 21% in
the SMT model for shared–L2, and by 4% and 11% in each
coremodel for shared–L3. Also, the combination can improve
the baseline in performance 11% in the Out-of-order model,
and 21% in the SMTmodel for shared–L2, and by 5%and 11%
in each core model for shared–L3 in the case of using com-
bined prefetcher.

Scalability: In addition, we evaluate the scalability of the
techniques discussed in this paper. For the scalability evalua-
tion, we had extended the number of cores to 32 and 64 cores,
and presented the TPA’s performance with the weighted
speedup normalized to the baseline performance in Fig. 17.
Fig. 17(a) presents the TPA’s performance with 16, 32, and 64
cores, showing the trend that TPA can improve performance
with more cores. TPA in larger scale on-chip networks have a
better chance to improve performance, due to more routers
with a prioritized arbitration which packets should pass
through.

Fig. 17(b) presents performance changes with TPT by 16,
32, and 64 cores. Each bar shows the performance with the
best period of measuring the congestion path for each core
count. Even with 32 and 64 cores, TPT can effectively throttle
prefetches, although the best period may change depending
on the size of networks. The number on top of each bar shows
the best period for each core count. In general, with larger
networks, the best period tends to increase, although eachmix
may have a slightly different optimal period. We expect that

Fig. 14. TPT vs. accuracy-only throttling.

Fig. 15. TPT vs. All request throttling.

Fig. 16. The performance summary of mutually aware prefetchers and networks.

Fig. 17. (a) TPA Performance in each core scale. (b) A change amount of
performance according to the period for measuing congesion paths in
TPT.

2326 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

the threshold cycles must be adjusted, depending on the size
of networks, which will be our future work.

Hardware cost:Table 6 summarizes hardware area cost for
our proposed mechanism. TPA needs additional arbiter for
prefetch arbitration, and some extra logic gates for control
signal. On the other hands, TPT needs two register files for
decision of throttling prefetch request and storing saturation
threshold. In addition, TPT needs a comparator and a sub-
tractor for comparing packet latency to saturation threshold,
and a decoder for decoding source information at packet
header. Based on our estimation, the area overhead of TPA
and TPT are approximately 0.040% and 0.0003%, over a node
and when compared with the total chip area, the area over-
head is very negligible. For this estimation, we use Orion [36]
for synthesis of TPA arbiter, and compute area overhead
based on 2009 ITRS roadmap [2].

6 RELATED WORK

As one of themost important techniques to hide longmemory
latencies, numerous studies proposed and evaluated prefetch
techniques [20], [30], [27], [33], [5], [6], [29].

Recent studies discussed the design of prefetchers consid-
ering the limited memory bandwidth and interference in
multi-core architecture. Lee et al. propose a scheduling mech-
anism for usefulness of prefetch request in DRAM controller
[21]. Srinath et al. explore the effect of memory bandwidth
contention on the effectiveness of prefetching, and propose
adaptive prefetcher designs, which adjust the aggressiveness
of prefetchers [31]. To reduce the negative impact of interfer-
ences among prefetchers in CMPs, Ebrahimi et al. propose a
global coordinationmechanismtoadjust theaggressivenessof
multiple prefetchers for the limited memory bandwidth [17].
These priorwork have recognized the importance of prefetch-
ingand the impact on shared resourcebuthavenot considered
the impact of the on-chip network shared resource.

Various prioritized arbitration in on-chip networks have
been proposed. For example, Cheng et al. improve the per-
formance and power efficiency of cache coherence protocols
considering characteristics by using multiple networks [10].
Bolotin et al. prioritize different types of coherence messages
to send critical messages before less critical ones [9]. Other
studies have investigated the criticality difference among
packets by observing application behaviors. Das et al. exploit
the different behaviors of applications sharing on-chip net-
works in multi-cores, and propose the prioritization of pack-
ets based on the time criticality of memory requests from
applications with different parallelisms [14], [15]. Li et al.
proposed to provide priority to more critical packets in the

network basedonprotocol information [22]. In addition, there
has been other prioritized arbiters proposed [11], [3]. Unfor-
tunately, they proposed new on-chip networks design for the
distinct characteristics of requests, but they dose not directly
consider a charateristics of prefetch on on-chip networks.

Avoiding network congestion through injection throttling
based on global or local knowledge has been studied.
Thottethodi et al. proposed throttling packets based on global
network congestion [34] while simple implementation to
throttle based only on using local informations [8] has also
be proposed. Other injection throttling include injection con-
trol mechanism through prediction of congestion [26] and
regional congestion awareness (RCA) for load-balancing [18].
These prior work commonly use injection throttling to pre-
vent networks congestion, but did not consider the impact of
different traffic type in making the throttling decision. they
didnot show the benefit to throttle less useful prefetch packets
comparing to all requests, which includes demand and pre-
fetch packets. In addition, our proposed congestion detection
mechanism will be complementray to congestion detection
mechanism proposed by these previous works. The metric
used to throttle or obtain congestion information is also
different from our work as we obtain congestion information
for each source-destination pair. However, our network-
aware prefetcher can be modifed to use these metrics–which
can result in different cost-performance trade-off.

Design of some on-chip networks have included separate
networks (or partitioned network). Some of the on-chip net-
work designs have used separate or partitioned networks,
similar to what we evaluated in Section 2.4. For example,
Tilera’s Tile64 [37] have five separate networks for different
traffic classes. Balfour and Dally [7] explored the benefit of
network duplication. However, our results show that parti-
tioned network resources does not provide any performance
benefit when we consider the impact of prefetch traffic.

7 CONCLUSION

In this paper, we investigated the mutual effects of hardware
prefetchers and on-chip networks, and proposed the im-
provements for prefetcher and on-chip network designs. Just
partitioning network resources for two types of traffic to
isolate them fromeachother lowered theoverall performance.
Instead, using unified networks, but prioritizing demand
packets over prefetch packets at the source node or routers
resulted in significant performance improvements. This paper
also showed that for prefetcher designs, it is critical to observe
congestion on networks, and adjust the aggressiveness of
prefetchers.

TABLE 6
Hardware Cost Estimation

Per router, total chip area is : means the name of component and the number of component.

LEE ET AL.: MUTUALLY AWARE PREFETCHER AND ON-CHIP NETWORK DESIGNS FOR MULTI-CORES 2327

Our experimental results shows that the combined benefits
of prefetch-aware networks andnetwork-aware prefetchers is
about 11–12% performance improvements for Out-of-order
cores, and 21–22% for SMT cores on average, up to 37%
improvement for some of the workloads and prefetchers.

We believe the potential for this mutual awareness will
grow, as more aggressive prefetchers are used and memory
and on-chip cache latencies increase and the number of nodes
and thus the number of hops in networks increase.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (No.2012R1A1A1014586), and the SW Comput-
ing R&D Program of KEIT(2011-10041313, UX-oriented
Mobile SW Platform) funded by the Ministry of Knowledge
Economy. John Kim was supported by WCU (World Class
University) program under the National Research Founda-
tion of Korea and funded by theMinistry of Eduation, Science
and Technology of Korea (Project No: R31-30007)

REFERENCES

[1] 240pin Unbuffered DIMM based on 4Gb B-die 8GB(1Gx64) Module
M378B1G73BH0, Samsung Electronics Data Sheet [online]. Available:
http://www.samsung.com/global/business/semiconductor/file/
product/ds_ddr3_4gb_b-die_based_udimm_rev13-0.pdf

[2] The International Technology Roadmap for Semiconductors (ITRS),
System Drivers, 2009 [online]. Available: http://www.itrs.net/

[3] D.Abts andD.Weisser, “Age-basedpacket arbitration in large-radix
k-ary n-cubes,” in Proc. ACM/IEEE Conf. Supercomput., Reno,
NV, 2007, pp. 1–11.

[4] N. Agarwal, et al., “Garnet: A detailed interconnection network model
inside a full-system simulation framework,”Dept. Elect. Eng., Princeton
Univ., Technical Report CE-P08-001, 2008.

[5] J.-L. Baer andT.-F.Chen, “Aneffectiveon-chippreloading scheme to
reduce data access penalty,” in Proc. ACM/IEEE Conf. Supercomput.,
New York, NY, USA, 1991, pp. 176–186.

[6] J.-L. Baer and T.-F. Chen, “Effective hardware-based data prefetch-
ing for high-performance processors,” IEEE Trans. Comput., vol. 44,
no. 5, pp. 609–623, May 1995.

[7] J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP on-chip
networks,” in Proc. 20th Annu. Int. Conf. Supercomput., New York,
NY, USA, 2006, pp. 187–198

[8] E. Baydal, P. Lopez, and J. Duato, “A family of mechanisms for
congestion control in wormhole networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 16, no. 9, pp. 772–784, Sep. 2005.

[9] E. Bolotin, Z. Guz, I. Cidon,R.Ginosar, andA.Kolodny, “The power
of priority: NoC based distributed cache coherency,” in Proc. 1st Int.
Symp. NoC, Washington, DC, USA, 2007, pp. 117–126.

[10] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian, and
J. B. Carter, “Interconnect-aware coherence protocols for chipmulti-
processors,” SIGARCH Comput. Archit. News, vol. 34, pp. 339–351,
May 2006.

[11] W. Dally, and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2003.

[12] W. J. Dally, “Virtual-channel Flow Control,” IEEE Trans. Parallel
Distrib. Syst., vol. 3, no. 2, pp. 194–205, 1992.

[13] W. J. Dally, and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Proc. Design Autom. Conf., Las Vegas,
NV, June 2001, pp. 684–689.

[14] R. Das, O.Mutlu, T.Moscibroda, andC. R. Das, “Application-aware
prioritization mechanisms for on-chip networks,” in Proc. 42nd
Annu. IEEE/ACM Int. Symp. Microarchit., New York, NY, USA,
2009, pp. 280–291.

[15] R. Das, O.Mutlu, T. Moscibroda, and C. R. Das, “Aérgia: Exploiting
packet latency slack in on-chip networks,” in Proc. 37th Annu. Int.
Symp. Comput. Archit. (ISCA), 2010, pp. 106–116.

[16] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-aware
shared resource management for multi-core systems,” in Proc. 38th
Annu. Int. Symp. Comput. Archit., 2011, pp. 141–152.

[17] E. Ebrahimi,O.Mutlu,C. J. Lee, andY.N. Patt, “Coordinated control
of multiple prefetchers in multi-core systems,” in Proc. 42nd Annu.
IEEE/ACM Int. Symp. Microarchitect., New York, NY, USA, 2009,
pp. 316–326

[18] P.Gratz, B.Grot, andS.W.Keckler, “Regional congestion awareness
for load balance in networks-on-chip,” in Proc. 14th Int. Symp. High-
Perform. Comput. Archit. (HPCA), 2008, pp. 203–215.

[19] P. Gratz, C. Kim, R. McDonald, S. W. Keckler, and D. Burger,
“Implementation and evaluation of on-chip network architectures,”
in Proc. IEEE Int. Conf. Comput. Des. (ICCD), 2006, pp. 477–484.

[20] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in
Proc. 17th Annu. Int. Symp. Comput. Archit., 1990, pp. 364–373.

[21] C. J. Lee, O. Mutlu, V. Narasiman, and Y. Patt, “Prefetch-aware
DRAM controllers,” in Proc. 41st IEEE/ACM Int. Symp. Microarch-
itect., Nov. 2008, pp. 200–209.

[22] Z. Li, J.Wu, L. Shang, R. Dick, andY. Sun, “Latency criticality aware
on-chip communication,” in Proc. Des. Autom. Test Eur. Conf. Exhib.
(DATE), 2009, pp. 1052–1057.

[23] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.
Hållberg, J. Högberg, F. Larsson, A. Moestedt, and B. Werner,
“Simics: A full system simulation platform,” Computer, vol. 35,
no. 2, pp. 50–58, Feb. 2002.

[24] M.M. K.Martin, D. J. Sorin, B.M. Beckmann,M. R.Marty,M. Xu, A.
R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multi-
facet’s general execution-driven multiprocessor simulator (gems)
toolset,” SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 92–99,
2005.

[25] N. McKeown, “The islip scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Netw., vol. 7, pp. 188–201, Apr. 1999.

[26] U. Y. Ogras and R. Marculescu, “Prediction-based flow control for
network-on-chip traffic,” in Proc. 43rd ACM/IEEE Des. Autom. Conf.
(DAC), 2006, pp. 839–844.

[27] S. Palacharla, and R. E. Kessler, “Evaluating stream buffers as a
secondary cache replacement,” inProc. 21stAnnu. Int. Symp.Comput.
Archit. (ISCA), Los Alamitos, CA, USA, 1994, pp. 24–33.

[28] L.-S. Peh, andW.Dally, “Adelaymodel and speculative architecture
for pipelined routers,” in Proc. 7th Int. Symp. High-Perform. Comput.
Archit. (HPCA), 2001, pp. 255–266.

[29] A. J. Smith, “Sequential program prefetching in memory hierar-
chies,” Computer, vol. 11, no. 12, pp. 7–21, Dec. 1978.

[30] L. Spracklen, Y. Chou, and S. G. Abraham, “Effective instruction
prefetching in chip multiprocessors for modern commercial appli-
cations,” in Proc. 11th Int. Symp. High-Perform. Comput. Archit.
(HPCA), Washington, DC, USA, 2005, pp. 225–236

[31] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-
efficiency of hardware prefetchers,” in Proc. 13th Int. Symp. High-
Perform. Comput. Archit. (HPCA), Washington, DC, USA, 2007,
pp. 63–74.

[32] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,
B. Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma,
A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S.
Amarasinghe, andA.Agarwal, “The rawmicroprocessor:A compu-
tational fabric for software circuits and general-purpose programs,”
IEEE Micro, vol. 22, no. 2, pp. 25–35, Mar./Apr. 2002.

[33] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy,
“Power4 system microarchitecture,” IBM J. Res. Dev., vol. 46, no. 1,
pp. 5–25, 2002.

[34] M. Thottethodi, A. R. Lebeck, and S. S. Mukherjee, “Self-tuned
congestion control formultiprocessor networks,”Proc. 7th Int. Symp.
High-Perform. Comput. Archit. (HPCA),2001, pp. 107–118.

[35] H. Wang, L.-S. Peh, and S. Malik, “Power-driven design of
router microarchitectures in on-chip networks,” in Proc. 36th Annu.
IEEE/ACM Int. Symp. Microarchitect, Washington, DC, USA, 2003,
p. 105.

[36] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A
power-performance simulator for interconnection networks,”
Proc. 35th Annu. IEEE/ACM Int. Symp. Microarchitect, 2002,
pp. 294–305.

[37] D.Wentzlaff, P.Griffin,H.Hoffmann,L. Bao,B. Edwards,C.Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro,
vol. 27, no. 5, pp. 15–31, 2007.

2328 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

Junghoon Lee received the BS degree in com-
puter science from Sungkyunkwan University,
Seoul, South Korea, and the MS degree in com-
puter science from Korea Advanced Institute of
Science and Technology (KAIST), Daejeon,
South Korea. He is a PhD candidate in computer
science at Korea Advanced Institute of Science
and Technology (KAIST). His research interests
include computer architecture, on-chip intercon-
nection network, and system security.

Hanjoon Kim received the BS degree in comput-
er science from Korea Advanced Institute of Sci-
ence and Technology (KAIST), Daejeon, South
Korea. He is a Ph.D. candidate in computer sci-
ence at Korea Advanced Institute of Science and
Technology (KAIST). His research interests in-
clude computer architecture, parallel computing,
and on-chip interconnection network.

Minjeong Shin received the BS and MS degrees
in computer science from Korea Advanced Insti-
tute of Science and Technology (KAIST),
Daejeon, South Korea. She is an associate re-
searcher in the Creative Innovation Center at LG
Electronics. Her research interests include OS
kernel architecture and low-level hardware/soft-
ware interface design.

John Kim received the BS and MEng degrees in
electrical engineering from Cornell University,
New York, in 1997 and 1998, respectively and
the PhD degree in electrical engineering from
Stanford University, in 2008. He is currently an
Assistant Professor in the Department of Comput-
er Science at KAIST with joint appointment in the
WebScience&TechnologyDivision at KAIST.He
spent several years working on the design of
different microprocessors at Motorola and Intel.
His research interests include multicore architec-

ture, interconnection networks, and datacenter architecture. He is a
member of IEEE and ACM.

Jaehyuk Huh received the BS degree in comput-
er science from Seoul National University, South
Korea, and the MS and PhD degrees in computer
science from the University of Texas at Austin. He
is an Associate Professor of Computer Science at
KAIST. His research interests include in computer
architecture, parallel computing, virtualization and
system security.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LEE ET AL.: MUTUALLY AWARE PREFETCHER AND ON-CHIP NETWORK DESIGNS FOR MULTI-CORES 2329

