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Abstract
Servers that consist of multiple nodes and sockets are in-
terconnected together with a high-bandwidth, low latency
processor interconnect network, such as Intel QPI or AMD
Hypertransport technologies. The different nodes exchange
packets through routers which communicate with other routers.
A key component of a router is the routing table which de-
termines which output port an arriving packet should be
forwarded through. However, because of the flexibility (or
programmability) of the routing tables, we show that it can
result in security vulnerability. We describe the procedures
for how the routing tables in a processor-interconnect router
can be modified. Based on these modifications, we propose
new system attacks in a server, which include both perfor-
mance attacks by degrading the latency and/or the band-
width of the processor interconnect as well as a livelock at-
tack that hangs the system. We implement these system
on an 8-node AMD server and show how performance can
be significantly degraded. Based on this vulnerability, we
propose alternative solutions that provide various trade-off
in terms of flexibility and cost while minimizing the routing
table security vulnerability.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General–
security and protection; C.2.1 [Network Architecture and
Design]: network communications, network topology

General Terms
Security

Keywords
processor-interconnect; routing table; router; vulnerability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-2957-6/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660267.2660290.

1. INTRODUCTION
Interconnection networks can be found in many differ-

ent domains, including on-chip network for multicore ar-
chitecture as well as off-chip networks for large-scale sys-
tem such as supercomputers [8]. The interconnection net-
work is a critical component of modern systems as com-
municating or moving data between compute nodes are be-
coming more important in determining overall system per-
formance and cost. With multisocket servers being com-
monly used in high-performance computing and datacenters,
we focus on the processor-interconnect or the interconnec-
tion networks found in these modern servers with multi-
ple sockets and nodes. Each socket can consist of multiple
nodes with multi-chip modules and each node can consist
of multiple cores. These nodes are interconnected with a
processor-interconnect and some commonly used processor-
interconnects include Intel QPI [29] and AMD Hypertrans-
port [2]. In this work, we focus on the processor-interconnect
found in these multi-socket (multi-node) SMP (symmetric
multiprocessing) systems and the security vulnerability in
the routing tables found within the processor-interconnect
router microarchitecture.

The basic building block of any interconnection network
is the router which receives packets and forwards them to
the appropriate output ports. As a result, one of the first
steps for an arriving packet is determining the output port
and is done by some routing computation logic within the
router. To provide flexibility, a routing table is commonly
used for the routing computation. The routing table struc-
ture is a lookup table, with the lookup done often based on
the packet’s destination and the entries within the routing
table specifying the output channel 1 that needs to be used
to route the packet. Although the routing table provides
flexibility, we show in this work that such flexibility can
result in security vulnerability. To the best of our knowl-
edge, this is one of the first work to investigate security
vulnerability within a processor-interconnect; in particular,
the routing table that is located within each router.

We first describe the methodology for how to modify the
routing table, which includes first understanding the topol-
ogy (or the connectivity) of the processor-interconnect. Based
on the ability to modify the routing table, we present three
different types of attacks. The livelock attack modifies the
routing table such that packets circulate in the network and

1In this work, we use the terminology link and channel in-
terchangeably. In addition, the term nodes and routers are
also used interchangeably since a communication between
“nodes” are done through the routers.



do not arrive at their destination and hangs the system.
The other two types of attacks are different form of perfor-
mance attack that degrades the latency or the bandwidth
of the processor-interconnect. Modifying the routing ta-
ble requires kernel access, which we assume can be gained
by exploiting previously known techniques [5, 11, 22, 24].
With root access, there are many different ways of crashing
or hanging the system as well as degrading system perfor-
mance. The system attacks presented in this work are an
alternative form of such attacks. However, the performance
attacks from modifying the routing table not only results in
performance degradation but also becomes very difficult to
detect without understanding that the routing table could
have been maliciously modified.
In particular, the contributions of this work include the

following.

• We show that programmable routing tables in processor-
interconnect has security vulnerability that can be ex-
ploited.

• We present a new type of attacks based on modifying
the routing table. We describe a livelock attack where
packets do not reach their destination and hangs the
system. In addition, two different performance attacks
are described – round-about attack, which increases
interconnect latency, and hotlink attack, which reduces
available bandwidth.

• We evaluate the impact of these attacks on real ma-
chine and show how the livelock attack can hang the
system while the performance attack can result in sig-
nificant performance degradation.

• We propose alternative solutions to avoid the security
vulnerability that provide different trade-off in terms
of flexibility and cost.

The rest of the paper is organized as follows. In Section 2,
we provide a background on router designs and interconnec-
tion networks. In addition, we describe modern processor-
interconnect and its routing table. The attack procedure on
how to modify the routing table is described in Section 3
and the threat model and three different type of attacks are
described in Section 4. We evaluate the impact of these at-
tacks on a Dell server in Section 5. Alternative solutions
to avoid the routing table vulnerability is discussed in Sec-
tion 6. Section 7 presents related work and we conclude in
Section 8.

2. BACKGROUND

2.1 Router Microarchitecture
A conventional router microarchitecture is shown in Fig-

ure 1. The different stages within a router pipeline include
routing computation, resource allocation (including switch
and virtual channels) and crossbar switch traversal [8]. In
this work, we focus on the routing computation aspect within
a router microarchitecture that determines the routing path
for a given packet. Once a packet arrives at the input buffer,
the packet first needs to go through the routing stage to de-
termine the router output port that the packet should be
routed through. The routing stage can implement different
routing algorithms, including oblivious or adaptive routing.

Figure 1: High-level block diagram of a router mi-
croarchitecture.

Given a particular routing algorithm, the routing logic for
the routing stage can be implemented with algorithmic rout-
ing or table-based routing [8]. For algorithmic routing, dedi-
cated combinational logic circuit is implemented which com-
putes the next hop (or the output port) at runtime. With a
dedicated hardware, the routing logic is often more efficient
(lower latency and lower area); however, algorithmic routing
is often limited to simple routing algorithms and lacks flexi-
bility – e.g., if the topology changes, the routing logic needs
to be re-designed. As a result, many routers use table-based
routing where a routing table exists at each router to imple-
ment the routing algorithm. Based on the destination of the
packet, a table lookup is done to determine the next hop.
Both oblivious and adaptive routing can be implemented
with table-based routing. In this work, we exploit this flex-
ibility in the routing tables of the router microarchitecture
and present different system attacks.

2.2 Interconnection Network Characteristics
Two important performance metrics in any interconnec-

tion network are latency and bandwidth. Latency is defined
as the amount of time it takes for a packet from its source
to its destination and has significant impact on overall per-
formance. Bandwidth defines the throughput of the entire
system and efficient utilization of the bandwidth maximizes
performance for bandwidth sensitive workloads. In addition,
the network must guarantee livelock and deadlock freedom.
Deadlock is the process where dependencies in resources ex-
ist that prevent progress in the network while livelock is
the condition where packets move in the network but do not
reach their destination [8]. Both livelock and deadlock needs
to be avoided (or properly recovered from when they occur)
in the network to provide a stable system.

In this work, we show how both the latency and the band-
width performance metrics can be degraded by modifying
the routing table – i.e., increase the latency for remote mem-
ory access or consume unnecessary bandwidth through mis-
routing. In addition, we show how the routing table can
be modified to create a livelock in the system by circulat-
ing a packet within the processor-interconnect and hang the
system.

2.3 Processor-Interconnect Router
There are different applications of interconnection net-

works, including on-chip networks and larger-scale networks.



Figure 2: Routing table initialization process of
memory-mapped routing table.

This work focuses on processor-interconnects found in multi-
socket systems but the security vulnerability can be ex-
ploited in other interconnection networks. For the rest of
this paper, we use an AMD-based system since the details
of Hypertransport Interconnect are publicly available [2].
In the AMD architecture, the router for each node in the
processor-interconnect network is placed on the Northbridge.
At the high-level, the router microarchitecture is similar to
the conventional router microarchitecture described earlier
in Section 2.1. The multiple cores in a node are connected to
the crossbar switch through the System Request Queue [6]
and thus, implements a form of external concentration [25]
as multiple cores share a single port into the router input.
The routing computation is implemented with a routing ta-
ble which is memory mapped. In the Hypertransport In-
terconnect that we consider, there are 4 physical channels
for each router, with each physical channel supporting 4 vir-
tual channels [7] to avoid protocol deadlock. With 4 physi-
cal channels, each router can connect to four other routers.
However, each physical channel can also be physically parti-
tioned into 2 sub-channels and thus, the number of routers
connected to can be up to 8.

2.4 Routing Table Initialization
Since the routing computation is implemented with a rout-

ing table, the routing table provides flexibility and can be
programmed with alternative entries to support different
system size and provide fault tolerance for physical link fail-
ure [23]. Figure 2 shows the overall process for routing table
initialization at boot-up time. Initially, alternative routing
tables are stored in the flashed memory with the BIOS. The
different routing tables represent various system configura-
tion that is possible for the given CPU and the motherboard
and the appropriate routing table is selected based on the
system configuration. In a multiprocessor system, one of the
cores is designated as the Bootstrap Processor (BSP), which
is designated as the first processor that comes online and is
responsible for proceeding with boot process, while the rest
of the processors are designated as Application Processors
(AP). When a reset signal is generated, the BSP jumps to
the reset vector to fetch the BIOS code. As part of the BIOS,
the BSP determines the channels available and the connec-
tivity of the channels to the neighboring nodes. Once the
BSP completes this process, the remaining APs go through
the same process. Thus, the number of nodes and all avail-
able links are determined through the BIOS. Based on this

information, the appropriate routing table is selected and
loaded into the routing table register in each router within
the Northbridge. Since the routing table registers for each
router are mapped to the memory, the routing table entries
can be modified through memory operations.

3. ROUTING TABLE ATTACK
PROCEDURES

In this section, we provide the details on the process re-
quired for routing table attack. We assume kernel access
throughout this section as the routing table entries can only
be modified in kernel mode. The procedure described in this
section is based on the AMD Hypertransport router but can
be generalized to other systems as well.

3.1 Identifying Network Topology
The first step in the routing table attack is the need to

understand the network topology or the connectivity be-
tween the nodes in the target system. In on-chip networks,
the topology is determined at design time and fixed. Sim-
ilarly, the topology for large-scale networks such as super-
computer networks is also known and determined by the
design/vendor. However, processor-interconnect networks
using either QPI or HT interconnect do not necessarily have
a determined topology, and their topologies can be arbitrary.
The topology is determined by the processor’s routers that
limit the number of ports per node and the motherboard
vendors as they determine the layout of the channels and
the node connectivity. The documentation provided by CPU
vendors (e.g. AMD [10] and Intel [18]) provides some ex-
ample topologies but the topology of the actual system is
not necessarily the same, as we show later in Figure 4. As
a result, since the topology can be irregular and the docu-
mentation to understand the processor-interconnect is not
readily available, the network topology needs to be reverse-
engineered.

To properly exploit the routing table vulnerability, two
components of the topology needs to be known – the logical
topology and the physical topology. The logical topology
describes the logical connections between the nodes while
the physical topology describes the physical information –
e.g., which particular channels (or output ports) are used for
the logical connection. To determine the topology and the
connectivity, we leverage the information available from the
SLIT (System Locality Information Table) table provided by
ACPI (Advanced Configuration and Power Interface) [19],
link status register, and the current existing routing table.
The SLIT table provides the information necessary for the
logical topology while the other two components are neces-
sary to determine the physical topology.

3.1.1 SLIT Table
The NUMA distance [19] is an integer value that repre-

sents the distance or hop count between two nodes. The
distance information is provided by the SLIT(System Lo-
cality Information Table) table [26], which is a matrix that
contains the relative distance information. Linux operat-
ing system exposes the relative distance information in user
space such as sysfs and NUMA utilities numactl and the
NUMA information can be easily obtained. An example
of NUMA distance information for Dell PowerEdge R815 is
shown in Figure 3(a) and the definition of the NUMA val-
ues are shown in Figure 3(b). The hop count between the



NODE 0 1 2 3 4 5 6 7
0 10 16 16 22 16 22 16 22
1 16 10 22 16 16 22 22 16
2 16 22 10 16 16 16 16 16
3 22 16 16 10 16 16 22 22
4 16 16 16 16 10 16 16 22
5 22 22 16 16 16 10 22 16
6 16 22 16 22 16 22 10 16
7 22 16 16 22 22 16 16 10

(a)

Relative Distance hop countshown in SLIT
10 local node
16 1 hop
22 2 hop

(b)

Figure 3: (a) SLIT table with NUMA distance for
Dell PE R815 server and (b) SLIT value definition.

nodes can be determined based on this information. The
value of 10 represents the local access (local memory) and
thus, the diagonal of the matrix in the SLIT table always
consists of the value 10. For the nodes that are 1 hop away
(e.g., NUMA value of 16), the two nodes are known to be
directly connected.
By iterating through all of the nodes, the logical topol-

ogy of the system can be determined. For example, starting
with Node 0 (R0), a graph can be drawn to show all the
nodes that are directly connected (or one hop away), which
include Nodes 1,2,4 and 6 (Figure 4(a)) for the Dell PE R815
server. Each edge is bidirectional to represent communica-
tion in both directions. Once Node 0 connectivity is known,
the same process can be repeated for the other nodes. For
simplicity of the figure, only the connectivity analysis for
Node 0 and Node 1 is shown in Figure 4(a). Once this
process is repeated for all of the nodes, the complete logical
topology can be obtained, as shown in Figure 4(b). However,
this information is insufficient to determine which channels
(or output ports) in the router is used for the connection
and thus, does not provide overall physical connectivity in-
formation. To find this, we leverage information from the
link status register and the current routing table itself.

3.1.2 Link Status Register
The link status register provides information on which

links in the system interconnect are actually connected or
not [10]. In addition, it provides information on whether the
channels are used for internal connections (e.g., channel be-
tween two nodes within a multi-chip module) or for external
connections to connect with other nodes or peripheral de-
vices. For example, the dotted box in Figure 4(a) shows the
nodes that are packaged within the same multi-chip module
based on the link status register information.

3.1.3 Routing Table
The last information necessary is understanding which

particular channels are used to connect to the nodes in other
packaging modules. We leverage the existing routing table
for this information. Within each router, a single routing
table is shared by all of the ports. The routing table in
the AMD Hypertransport router that we evaluate consists

(a)

(b)

Figure 4: (a) Partial logical topology from the SLIT
table NUMA distance information to show the con-
nectivity between the nodes and (b) the full topol-
ogy. The dotted box shows the nodes that are pack-
aged together in the same module.

of 8 entries and is indexed by the destination node ID of a
packet. Each entry in the routing table is 32-bit long, as
shown in Figure 5, with entry containing routing informa-
tion for three type of packets – broadcast packets, request
packets, and response packets. The routing decision can be
different for the different packet type. Each bit in the rout-
ing table entry indicates a link identifier (i.e., output port
or the output channel and the sublink information) through
which the packet needs to be routed for a given particular
packet type.

With the additional information provided by the routing
table (in addition to the SLIT table and the link status reg-
ister), the complete topology (including the physical connec-
tivity) of the system can be determined. An example of the
different link (and sublink) assignments for the server used
in our evaluation is shown in Figure 4(b) for two of the nodes
(R0 and R1). Based on this understanding of the network
topology, we describe how the routing table can be modi-
fied in the following section to achieve the different type of
attacks that will be described later in Section 4.

3.2 Modifying Routing Table
Since the routing table in the Hypertranport-based inter-

connect is a memory-mapped I/O device, it can be accessed
by memory operations. As shown in Figure 5, all of the
routing tables in the system are mapped to specific mem-
ory address range sequentially where each node has its own
memory address for a single routing table. The memory
address range used for the routing table is in PCI-defined
configuration space and thus, the routing table can be mod-
ified with PCI Kernel APIs. We implemented a malicious
device driver which is inserted into kernel address space to



Figure 5: Routing table organization in Hypertrans-
port Interconnect.

Figure 6: Routing table modification procedure.

access PCI-defined configuration space. This driver first cre-
ates a malicious file in proc virtual file system and it maps
all of the file operations such as open, read and write into
the routing table in the Northbridge. Since the malicious
file in proc file system exists in user space with normal user
privilege, the attacker can read and write the file via UNIX
standard I/O which results in modifying the routing table in
the Northbridge. The malicious file in the system can serve
as a backdoor-like attack that allows any user to access the
routing table and modify it. This malicious file can also be
removed after the routing table modifications.

4. ROUTING TABLE ATTACK SCENARIO
In the previous section, we described the how the routing

table in a system interconnect can be modified. In this sec-
tion, we first begin by describing our threat model. We then
introduce three different routing table attacks. The first
attack (livelock attack) results in a system hang as pack-
ets continue to circulate within the network. The next two
attacks (roundabout attack and hotlink attack) are perfor-
mance attack as the latency and the bandwidth of the in-
terconnect is degraded.

4.1 Threat Model
In this work, we consider an attacker that has kernel-level

access in a commodity operating system. With the large
number of lines of codes in an OS, different exploits that
result in kernel-level access for commodity OSes have been
shown [37, 30, 27]. The goal of the attacker is to crash the
system or create system performance attack with security

Figure 7: Block diagram of livelock attack between
R2 and R0 nodes.

analyst (e.g., IT professional) unable to determine the source
of the attack. We assume the attacker has no physical access
to the hardware – either the router or the processor.

After the initial attack (or modifications to the routing
table), the routing table state is modified and no malware
is necessary to maintain the attack. Thus, the device driver
can be removed and leave minimal trace on the system; how-
ever, this prevents any further modifications to the routing
tables. If the attacker desires to scrub any traces (and main-
tain the possibility of further modifying the routing table),
an appropriate Rootkit will be necessary.

4.2 Livelock Attack
As described earlier in Section 2.2, livelock in interconnec-

tion network is defined as a condition where a packet con-
tinues to move through the network but does not reach its
destination [8]. Guarantee from livelock freedom is necessary
in order for an interconnection network to function properly.
In the routing table attack on processor-interconnect, a live-
lock can be created by forming a routing “loop” as shown in
Figure 7 which results in a packet from circulating in the
network without reaching its destination.

In the network shown in Figure 7, assume a packet is sent
from source (R2) to destination (R1) by routing through
an intermediate node (R0). In normal operation at R0, a
packet that arrives at R0 destined for R1 will be routed
through the appropriate channel to reach its destination.
However, the routing table in R0 can be modified such that
for packets destined for R1, instead of being routed through
the “West” output port, the packet is re-routed towards the
“East” output port (as shown with the dotted line in Fig-
ure 7). With this modification to the routing table in R0,
the packet will arrive back at R2 and then, be sent to R0
again since the routing table in R2 has not been modified.
As a result, the packet will continue to circulate between
R0 and R2, without arriving at the destination R0. Since
the processor-interconnect system is not intended to toler-
ate missing or dropped packets, the livelock condition will
eventually results in a system hang.

Figure 8 shows how the routing table in node R0 is mod-
ified to implement this livelock attack. Figure 8(a) shows
the original routing table, based on the channel (link) and
sublink assignments described earlier in Figure 4(b). For
packets destined for node 1 (R1), the original routing table
in R0 shows that packets should be routed through link 2
as 4th bit of both the request and reply fields of the routing
table is set to 1. However, if the routing table is modified
such that these bits are set to 0 but the second bit (which
corresponds to link 0 – Figure 8(b)) is set, packets will be



Figure 8: (a) Original routing table in R0 and (b)
modified routing table to implement the livelock at-
tack. For simplicity, only the routing table entry for
destination node 1 (R1) is shown in the figure.

Figure 9: Block diagram of roundabout attack be-
tween R1 and R0 nodes.

sent through the channel that is connected to R2 (instead
of R1) and result in a livelock. The example of livelock de-
scribed in this section is one example of livelock but similar
routing livelock condition can be created that involves more
nodes or other nodes in the system.

4.3 Roundabout Attack
The latency of a remote memory access in a NUMA sys-

tem can have significant impact on overall system perfor-
mance. Compared with local memory access, the remote
memory access has higher latency because of the latency to
traverse one or more routers (and the channels) to reach the
remote memory. The routing for the remote memory access
is often done with minimal routing 2 where the number of
hops (or intermediate routers) is minimized to reduce overall
latency. However, in this section we describe a performance
attack that exploits the routing table security vulnerability
by increasing the remote memory access latency through the
roundabout attack where the routing hop count is increased.
An example of a roundabout attack is shown in Figure 9.

Assume a packet needs to be sent from a source node R1 to
a destination node R0 (e.g., application running on a pro-
cessor located on the R1 node needs to access the memory
that is located on the R0 node). Without any modification
to the routing table, the minimal route would be taken as
shown with the solid line in Figure 9. However, a perfor-
mance attack can be done to increase the remote memory

2Non-minimal routing can be used to increase path diver-
sity but most processor-interconnect do not leverage non-
minimal routing because of its complexity [8].

Figure 10: Block diagram of Hotlink Attack through
a common channel between R6 and R0 nodes.

access latency by altering the routing path with routing ta-
ble changes. In this particular example, we modify the rout-
ing table such that instead of the packet taking only 1 hop,
the packet takes 7 hops, as shown with the dotted line in
Figure 9. This requires modifying the routing table in not
only R1 but also all the other intermediate nodes.

One side effect of this roundabout attack is that other
packets destined to R0 from other nodes will also utilize this
new path. For example, a different packet from node R4 to
R0 would normally take the minimal path (R4,R0) with a
single hop. However, the changes in the routing table will
result in the packet taking the non-minimal route (R4, R5,
R3, R2, R0). The roundabout attack can also have a dif-
ferent degree of indirectness or the number of intermediate
routers that a packet will be routed through. The example
in Figure 9 was the worst-case roundabout attack for this
particular system since all of the other intermediate router
nodes is traversed. Instead of increasing the hop count from
1 to 7, the hop count can also be increased to arbitrary num-
bers – e.g., three hop counts with (R1,R7, R6, R0) routing
path – and have different impact on performance.

4.4 Hot-Link Attack
The roundabout attack described in the previous section

attacked the latency aspect of interconnect performance.
However, another important metric is bandwidth since the
channel bandwidth is a resource that is shared by the differ-
ent nodes and impact overall interconnection network through-
put. In this section, we describe the hotlink attack which
degrades the bandwidth in the system by re-routing packets
through a common or a hot link in the system and degrade
overall performance.

An example of the hotlink attack is shown in Figure 10.
We assume there is a normal flow that uses the channel be-
tween R6 and R0 where a flow is defined as traffic originat-
ing from a source to a destination. However, by altering the
routes for other flows, this particular channel can be over-
loaded and results in a bottleneck channel and performance
degradation. In this particular example, two other flows (R7
to R1) and (R4 to R2) has been modified such that instead of
routing minimally between the source and destination, the
packets are routed through intermediate routers R6 and R0.
Since all of the packets will end up sharing the same chan-
nel between nodes R6 and R0, the particular channel or link
becomes the hotlink and degrades the bandwidth utilization
and degrades overall performance. Unlike the livelock or
the roundabout attack, multiple entries in the routing table
needs to be modified – for example, in R6, the routing en-



Figure 11: Block diagram of performance attack
that combines both roundabout and hotlink attack.

Description Value

System AMD Opteron 6320
# of Sockets 4
# of Nodes 2 per socket
# of Cores 4 per node
L2 Cache 1 MB per node
L3 Cache 6 MB per node
Interconnect 6.4 GT/s HT 3.0
# of QPI
Links

4 per node

Table 1: Dell PE R815 workstation using in our eval-
uation.

tries for destination R2 and R1 needs to be modified such
that they are routed through the R6-R0 channel. In addi-
tion, the routing table in both R7 and R4 also needs to be
modified accordingly as well.
For simplicity, the example in Figure 11 is shown where

two flows are added to create the hotlink. However, this
attack can also be generalized such that the number of flows
contributing to the hotlink can be increased – e.g., R5 to
R3 flow can be modified to route through (R5, R4, R6, R0,
R2, R3) etc. In addition to roundabout attack and hotlink
attack as individual attacks, the two type of attacks can
be combined to maximize the performance degradation as
shown in Figure 11. The hotlink shown in this example
(between nodes R6 and R4) degrades the bandwidth usage of
this channel and thus, the remote access latency between the
R1 to R0 is further degraded, compared with the standalone
roundabout attack.

5. EVALUATION
In this section, we describe the methodology used to eval-

uate the alternative performance attack. We then present
the results of the different performance attacks and their
performance degradation. We also evaluated the impact of
the livelock attack, using the routing table changes described
earlier in Section 4.2 to verify that the system hangs. Even
though the system hangs, we were not able to identify any
machine check error messages that are logged.

5.1 Methodology
In the evaluation, we used a Dell PowerEdge R815 sys-

tem [9] with AMD processors [10]. The system uses a multi-
chip module (MCM) and thus, a single socket consists of two
nodes. The Dell PE R815 system consists of 4 sockets and
thus, 8 nodes in our evaluation. The Hypertransport is used
as the interconnect and the topology used to interconnect

Figure 12: MPKI measured from the Dell PE R815
for the different SPEC workloads.

the 8 nodes was described earlier in Figure 4(b). The de-
tails of the system are summarized in Table 1. SPEC CPU
2006 [13] are used in the evaluation and the performance
degradation of the workload is measured by using execu-
tion time as the performance metric. We evaluate SPEC
workloads that have different memory intensity (i.e., differ-
ent amount of MPKI (miss per kilo-instruction)) to evalu-
ate the performance degradation for different type of work-
loads. MPKIs from the last level cache (L3) for SPEC2006
benchmark suite [13] are measured using the target machine
(see Figure 12). Higher MPKI often leads to more severe
performance degradation from higher main memory latency
and/or lower bandwidth. The workloads can be divided
into three groups based on the memory intensity – L (mem-
ory non-intensive), M (medium), and H (memory-intensive).
In our evaluation, we selected three representative work-
loads from each group : L(hmmer, tonto, namd), M(astar,
zuesmp, gcc), H(soplex, libquantum, mcf). To minimize
the impact of system variation and interference from back-
ground process, each evaluation is measured 10 times and
the minimum execution time is used [20].

5.2 Performance Attack Evaluation
The roundabout attack is evaluated using the system de-

scription shown earlier in Figure 9. A single workload is
executed on node R1 and we assume that the memory that
it needs to access is located in R0. We vary the degree or
the number of hop count in the roundabout attack and the
results are shown in Figure 13(a). The results plot the exe-
cution time of the workload and the results are normalized to
the baseline without any modification to the routing table.
As expected, the L workloads are not impacted significantly
by the roundabout attacks while M workloads has some im-
pact and H workloads have the highest impact. In addition,
for the M and H workloads, the performance degradation
also depends on the degree of the roundabout attack – as
the degree (or the number of hop count) is increased, the
performance degradation also increases. For H workloads,
the roundabout attack can result in up to 90% degradation
with 7 hop roundabout attack.

Since the roundabout attack increases the processor-interc-
onnect latency, we use the performance counters to measure
the read average latency for memory read commands [10].
The latency values are shown in Figure 13(b) and the latency
values are normalized to the baseline (i.e., 1 hop) where
the routing table is not modified. As expected, the round-
about attack increases the latency and the increase is higher
with higher hop count in the roundabout attack – on av-
erage, by introducing 7-hop roundabout attack, the latency
increases by approximately 3× – and thus, resulting in the
overall performance degradation. It is interesting to note
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Figure 13: Results from roundabout attack includ-
ing (a) performance degradation and (b) average
network latency.

that for the HMMER, latency has significant degradation
with 7-hop roundabout attack (by 4.5×), higher than other
workloads, but the performance impact is negligible. Since
HMMER is non-memory intensive, the number packets in
the procesor-interconnect network are relatively small and
thus, the variability from non-workload (background pro-
cess) packets likely results in high latency value but has
minimal impact on the workload performance.
To evaluate the hotlink attack, we assume a flow of traf-

fic from node 6 (R6) accessing the memory in node 0 (R0)
as shown earlier in Figure 10. For simplicity, we show the
harmonic mean result for each group of workload (L, M, H).
Since the hotlink attacks the bandwidth aspect of the in-
terconnect, we measure the link utilization from the perfor-
mance counters and average them across the different work-
loads within each category. The results of hotlink attack are
shown in Figure 14(a) and the results are normalized to the
baseline with no routing table modification. In the initial
comparison, we add the results of intra-node hotlink where
malicious codes are added to the same node. In our target
system, each node consists of four cores so in addition to
the application of interest, we run a very memory intensive
workload (i.e., mcf) on the other cores to utilize the same
hotlink channel bandwidth.
As shown in Figure 14(a), the performance degradation in-

creases as the number of flows is increased since the hotlink
becomes more of a performance bottleneck with more flows
sharing the hotlink. In addition, the memory intensive work-
load performance is further degraded with the hotlink at-
tack. For the H workloads with 6 flows in the hotlink attack,
it results in approximately 3.8× performance degradation.
Figure 14(b) shows the link utilization for the hotlink at-
tack. Because of the limitations of the Hypertransport per-
formance counters, we focus on the relative values. For the

(a)

(b)
Figure 14: Hotlink attack evaluation results includ-
ing (a) performance degradation and (b) average
link utilization.

memory intensive workloads, the link utilization values are
high even for baseline and continue to remain highly utilized
(or slightly increase) as the hotlink becomes saturated. For
the memory non-intensive workloads, the utilization is low
in the baseline but increases as additional flows are added
to the link and thus, there is performance degradation for
memory non-intensive workloads, approximately 50% degra-
dation with 6 flows in the hotlink attack.

In addition to the hotlink and roundabout attacks, the
two can be combined to further increase the performance
degradation, as shown earlier in Figure 11. The bandwidth
contention for the hotlink will further degrade the latency
on top of the roundabout attack and thus, further increase
the remote memory access. Although the number of flows
for the hotlink can be significantly higher, we only evaluate
roundabout attack combined with hotlink attack that con-
sists of only 1 and 3 flows. Higher number of flows resulted
in more significant performance degradation and became in-
feasible to evaluate them appropriately. The results for the
combined attack are shown in Figure 15 – and shows result
where only 1 thread is being executed on a node and where 4
threads (i.e., intra-node hotlink) is being executed. Results
show that with only 1 thread, the combined attack results in
approximately 58× degradation in performance while with 4
threads, the combined attack results in approximately 250×
performance degradation.

6. DISCUSSION
In this section, we discuss other possible performance at-

tacks based on modifying the routing tables, in addition to
what was discussed earlier in Section 4. We then discuss
some possible solutions to the routing table vulnerability in
processor-interconnect systems and their trade-off.

6.1 Other Performance Attacks
Coherence Message: In this work, the modification of

the routing tables focused on request and response packets.
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Figure 15: Results from combined performance at-
tack (roundabout and hotlink attacks) for (a) 1
thread and (b) 4 threads per core.

However, another important class of messages in processor-
interconnect is coherence messages and in the Hypertransport-
based system, the corresponding broadcast messages. By
modifying the coherence messages (especially for workload
that generate a lot of coherence messages), both the band-
width and the latency can be impacted by altering the co-
herence message routing table entries.
Topology Modification: The roundabout attack mod-

ified the hop count for a particular source-destination com-
munication. However, this attack can be generalized such
that the effective topology of the processor-interconnect is
modified and further degrade overall performance. In par-
ticular, the diameter of the topology has significant impact
on overall performance. By generalizing the roundabout at-
tack to all of the nodes, the effective diameter of the network
can be increased and further degrade overall performance.
I/O Bandwidth: Another shared resource in these mul-

tisocket server is the I/O bandwidth and the I/O devices are
not necessarily connected to all of the nodes/routers but to a
few limited nodes. As a result, for I/O intensive workloads,
the I/O bandwidth can be the bottleneck but by modify-
ing the routing table, the hotlink attack (combined with the
limited I/O bandwidth) can result in another form of per-
formance attack.

6.2 Alternative Solutions
The different possible solutions for the routing table vul-

nerability are described in Table 2.
Software Configurable Routing Table: This is the

current solution provided in the Hypertransport routing ta-
ble. While it provides high flexibility and minimal hardware
cost, it introduces the vulnerability that we have described
in this work.
Hardware Configurable Routing Table: Instead of a

software approach, the routing table can still support flexible
(configurable) routing table with the hardware responsible
for updating the routing table. This would introduce signifi-
cant hardware complexity but similar approaches have been
used in SPIDER SGI router chip [12]. The vulnerability de-
scribed in this work can be removed at additional hardware
cost.
Fixed Routing Table: A simple solution is to provide

fixed topology routing table. This removes any routing table
vulnerability and is simplest in hardware implementation
– and thus, can result in the best router performance as
described earlier in Section 2.1. However, this removes all
flexibility of the system design and thus, only one topology

for a given system can be supported. Any node or link failure
would result in breaking the system.

Routing Table Encryption: The fundamental prob-
lem with the routing table security vulnerability is that the
routing table is mapped to the memory address space and
it is visible to the user. To avoid this security vulnerability,
the visibility of the routing table can be minimized by en-
crypting the routing table with existing technologies (e.g.,
TPM [33]). While this minimizes the vulnerability of the
routing table, this can have significant impact on perfor-
mance of the processor-interconnect. Routing table lookup
needs to be done at each router for each packet. Thus, the
decryption overhead of the routing table lookup will have
significant impact on interconnect latency and have signifi-
cant impact on overall performance.

7. RELATED WORK
Security of processor- and memory-interconnects:

Huang [14] introduces bus probing attacks targeting the
processor-interconnects of an XBox gaming console. Huang
shows critical data can be extracted using a custom FPGA
device because XBox transfer data without encryption. Mosci-
broda and Mutlu [28] describes a denial-of-service (DoS) at-
tack between applications by exploiting a shared memory
controller with First Ready First-Come-First-Served (FR-
FCFS) scheduling. They show that an application having
streaming access pattern can be slowed down significantly
when co-scheduled with another application having random
access pattern. The authors propose a fair memory schedul-
ing algorithm to thwart this attack by the scheduler moni-
toring the relative slowdown of each application.

Although an AMD’s Hypertransport-based system is used
throughout this paper, Intel-based systems also have simi-
lar programmable routing tables for their processor inter-
connects [16, 17]. Hence, the routing table attack is (very
likely to be) applicable to Intel processors as well. Recently,
decoy routing is introduced [21, 31] to combat Internet (IP
network) censorship. The decoy router circumvents the orig-
inal routing path to enable the client to reach to a blocked
destination server.

The routing table in the network-on-chip (NoC) can also
have similar vulnerability. If a simple routing algorithm
(such as a dimension-ordered routing [8]) is used, the rout-
ing can be implemented in hardware and there would no
vulnerability. However, even with such simple routing, some
programmability is likely required to provide fault tolerance
and expansibility. The NoC from Tilera [3] is one such ex-
ample as the number of cores can an vary from 9 nodes to
over 100 nodes. With a strictly hardware-only approach,
a different routing logic needs to be implemented for each
network size. Instead, each router has a memory-mapped
configurable register [1] that is used to identify the node
register (x and the y coordinates) and is used to decide the
next hop. Hence, one may exploit this to devise a similar
attack.

The large-scale networks designed for supercomputers [4,
32] can also be vulnerable. The routing tables for such net-
works differ from the processor-interconnect described in
this work. For example, the routing table often exists for
each port in the large-scale network routers and the initial
values of the routing tables are not loaded from the BIOS but
computed by the software. The service processor attached
to the routers enables access to the routing table, similar



Vulnerability Flexibility Hardware Complexity Routing
Performance

Configurability
S/W Configurable Routing Table - + + o
H/W Configurable Routing Table + + - o
Fixed Topology Routing Table + - + +

Visibility Routing Table Encryption o + + -

Table 2: Alternative solutions to avoid routing table security vulnerability. + : good, o : moderate, - : poor

to what the device driver provided in the Hypertransport-
based system. As a result, the configurablility of the routing
tables in these networks is also vulnerable to similar attacks.
Secure network-on-a-chip’s (NoCs): Wang and Suh [35]

introduce a possibility of timing channel attack for network-
on-chip. They show network interference among applica-
tions leads to timing variation because applications inter-
fere with each other on the network. Then, a malicious ap-
plication can infer critical data for target application from
the timing information. To remove the timing channel, they
suggest a one-way information leak protection mechanism in
which applications can be categorized into multiple secure
domains according to security level and a router eliminates
the network interference from more secure domain to less
secure domain with priority-based arbitration. But appli-
cations in higher secure domain can have excessive network
latency as the traffic increase. Wassel and Gao [36] argue
only static scheduling, such as time-division multiplexing
(TDM), can guarantee complete non-interference among se-
cure domains. However, time-multiplexed scheduling intro-
duces additional latency since a packet needs to wait for
its turn. They introduce SurfNoC to reduce the extra la-
tency in which a packet in a domain is routed in a dimension
pipelined manner as if a packet surfs the waves.
Bypassing Chain of Trust and other performance

attacks: The routing table attack introduced in this study
is not permanent because the routing table registers con-
taining malicious information are volatile, thus the original
table is recovered by rebooting. However, many studies [22,
5] introduce the vulnerabilities for the trusted boot process
(e.g. bootloader bug, TPM reset, the Root of Trust for Mea-
surement [33] implementation weakness). Exploiting these
vulnerabilities, it is feasible to bypass the Chain of Trust [33]
and insert the malicious code into the BIOS to make a rout-
ing table attack permanent.
There are other performance attacks previously proposed

[38, 34, 15]. This work introduces alternative performance
attacks, and, to the best of our knowledge, this is one of
the first work to demonstrate the feasibility of performance
attack by exploiting the vulnerability of the routing table.

8. CONCLUSION
In this work, we illustrated the architectural vulnerability

of router designs in modern processor-interconnect technolo-
gies such as QPI and HT. Because of the benefit of provid-
ing flexibility, a routing table is commonly is used in the
router design but we showed how the routing table entries
can be maliciously modified to carry out different attacks
in a multisocket server system. We described the procedure
required to modify the routing table located in the North-
bridge and then, described three different attacks – livelock
attack, roundabout attack, and hotlink attack. The livelock
attack results in a system hang while the other two (round-

about and hotlink) attacks results in a performance degrada-
tion. On an AMD-based system, we performed these attacks
to show that the system hangs from a livelock and measured
the performance degradation for the other attacks. We also
proposed alternative solutions to minimize this security vul-
nerability that have different performance and complexity
(cost) trade-off.
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