
Leveraging Torus Topology with Deadlock
Recovery for Cost-Efficient On-Chip Network

Minjeong Shin, John Kim
Department of Computer Science

KAIST
Daejeon, Korea

{shinmj, jjk12}@kaist.ac.kr

Abstract—On-chip networks are becoming more important as
the number of on-chip components continue to increase. 2D mesh
topology is a commonly assumed topology for on-chip networks
but in this work, we make the argument that 2D torus can provide
a more cost-efficient on-chip network since the on-chip network
datapath is reduced by 2× while providing the same bisection
bandwidth as a mesh network. Our results show that 2D torus
can achieve an improvement of up to 1.9× over a 2D mesh in
performance per watt metric. However, routing deadlock can
occur in a torus network with the wrap-around channel and
requires additional virtual channels for deadlock avoidance. In
this work, we propose deadlock recovery with tokens (DRT) in
on-chip networks that exploits on-chip networks – exploiting
the abundant wires available while minimizing the need for
additional buffers. As a result, deadlocks can be exactly detected
without having to rely on a timeout mechanism and when needed,
recover from the deadlock. We show how DRT results in minimal
loss in performance, compared with deadlock avoidance using
virtual channels, while reducing the on-chip network complexity.

I. INTRODUCTION

As more components are integrated into a single chip, the
on-chip network that interconnects these components together
is becoming more critical. There has been significant amount
of research in on-chip networks over the past decade, with
one of the earliest work [1] proposing a 2D torus topology for
on-chip networks to leverage the abundant amount of on-chip
wires. However, most on-chip network research have instead
assumed a 2D mesh topology because of its simplicity and
some commercial multicore chips have also implemented a
2D mesh topology [2]. Prior work [3], [4] have provided
comparisons between a mesh and a torus topology in on-
chip networks but have assumed additional buffers (virtual
channels) to avoid deadlock.

In this work, we revisit the comparison of 2D mesh vs 2D
torus topology in on-chip networks and provide an argument
for why 2D torus can provide a more cost-efficient on-chip
network. Assuming a constant network bisection bandwidth,
2D torus network results in narrower network channels. Thus,
the area of an on-chip network router can be significantly re-
duced since the router area is quadratically proportional to the
channel width [5]. In addition, our results show that 2D torus
can result in up to 1.9× improvement in performance per watt
metric compared with a 2D mesh. However, the wrap-around
channel is problematic as it introduces circular dependencies
and routing deadlock. Instead of relying on virtual channels

(VCs) to avoid routing deadlock, which increases on-chip
network buffers, we propose a deadlock recovery mechanism
using tokens to detect deadlock and then recover. We add
two additional lightweight networks – a token network and
a deadlock-recovery network – to support deadlock recovery
and allow deadlocks to be exactly detected. The additional
networks introduces more buffers but compared with adding
virtual channels, our results show that there is still over 35%
reduction in the amount of on-chip buffers.

The deadlock recovery with tokens presented in this pa-
per shares similarity to other deadlock recovery mechanisms
such as DISHA [6] as they consist of deadlock detection
and recovery phase. However, the main difference is that
we exploit the characteristics of on-chip networks to add
additional lightweight networks to be able to exactly detect
when deadlock occurs – instead of relying on a timer-based
heuristic. Our work does include a timer to detect if a deadlock
detection token has dropped or not. However, the timer is not
used to detect deadlock but only when a token drops and thus,
no false deadlocks can be detected. In addition, the timers are
relatively small – on the order of k cycles where k is the radix
of the torus network while the timers in DISHA need to be
significantly larger to avoid false deadlock detection.

II. BACKGROUND / MOTIVATION

A. Performance comparison between Torus and Mesh

In Figure 1(a), we compare the performance of 2D mesh
and a 2D torus topology in a 16-node chip multiprocessor
(CMP) system. 1 To provide a fair comparison between the two
topologies, we assume a constant network bisection bandwidth
– thus, assume a mesh topology with 16B channels and a torus
with 8B channels. The results show that there is no significant
difference in performance between the two topologies. Except
for apache, torus actually shows very small (a few percent at
most) improvement in performance. However, torus is able to
achieve this performance by using network channels that have
1/2 the channel bandwidth of the mesh topology.

The wrap-around channel in a torus reduces the average
hop count, compared with a mesh topology and can reduce

1The simulation results are from GEMS [7] full system simulator with
benchmarks from SPLASH-2 [8] (fft, lu), PARSEC [9] (blackscholes, can-
neal), and server workloads (apache, jbb).

978-1-4577-1954-7/11/$26.00 ©2011 IEEE 25

0.8

0.85

0.9

0.95

1

1.05
N

o
rm

al
iz

e
d

 E
xe

cu
ti

o
n

 t
im

e

Mesh Torus

0

0.5

1

1.5

2

2.5

N
o

rm
al

iz
e

d

e
xe

cu
ti

o
n

 c
yc

le
/p

o
w

e
r Mesh Torus

(a) (b)

Fig. 1. (a) Performance and (b) performance/watt comparison between a
torus and a mesh network. Mesh topology has 16B channel while the torus
has 8B channels. Note the zoomed in y-axis for (a).

the zero-load latency. The zero-load latency of a packet can
be expressed as sum of the header latency (Th) and the
serialization latency (Ts),

T = Th + Ts

= H × tr + L/b

where H is the hop count, b is the channel bandwidth, tr is
the router latency, and L is the packet size. The hop count
H is dependent on the network size (N). Since the average
hop count of mesh is Nk/3 and the hop count of torus is
Nk/4 [10], the header latency of the mesh increases faster
than torus. In the Figure 2, we compare the zero-load latency
between a torus with 8B channel and a mesh with 16B channel,
assuming a router latency of 1 cycle, varying the packet size
and network size. When the packet size is small (under 16B),
torus always has lower zero-load latency even with half of
the bandwidth. If the router latency increases, this gap also
increases. Thus, although the serialization latency increases
with narrower channels, the reduced hop count of the torus
topology results in an overall latency which is very comparable
to the mesh topology.

However, with narrower channels, the cost of a torus router
is much lower than a mesh router. Router area is proportional
to O(p2w2) where p is the port count and w is the channel
width. Since p is identical for both topologies while w is
reduced by a factor of 2, the overall area can be reduced
by approximately a factor of 4. In addition, router power
estimates using Orion2.0 [5] show that the torus topology
router provides approximately 2× improvement in power. In
Figure 1(b), we plot the efficiency of the two topologies by
plotting performance/Watt and it shows the torus topology
achieving up to 2× improvement in efficiency.

B. Routing Deadlock in Torus network

Even with minimal dimension ordered routing, circular
dependency caused by the wrap around channel in a torus
can cause routing deadlock. This routing deadlock in a torus
network can be handled either through deadlock avoidance
or deadlock recovery. In this section, we describe different
deadlock handling mechanisms that are commonly used and
motivate deadlock recovery in on-chip networks.

1) Related Work: Deadlock avoidance is commonly done
through the use of virtual channels (VCs) [11] to remove the

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64

Ze
ro

-l
o

ad
 la

te
n

cy
 (

cy
cl

e
s)

Packet Size (B)

Torus Mesh

0

10

20

30

40

50

2 4 8 16 32 64

Ze
ro

-l
o

ad
 la

te
n

cy
 (

cy
cl

e
s)

Network dimension size (n)

n x n Torus n x n Mesh

(a) (b)

Fig. 2. Zero-load latency comparison of a mesh and a torus (a) as packet
size is varied in a 8×8 network and (b) as network size is increased.

circular dependency. By partitioning the resources (i.e., VCs)
appropriately, the circular dependency is removed and routing
deadlock does not occur. To avoid the use of virtual channels,
bubble router [12] has been proposed. Circular dependencies
occur when all resources involved are completely utilized.
Bubble router avoids this deadlock by ensuring that there is
at least one free buffer within the circular dependency. The
bubble router requires virtual cut-through (VCT) flow control
and restricts injection such that packets are only injected or
allowed to change dimensions when the amount of buffer size
available is at least twice the size of the maximum packet size.
This restriction ensures that there is always a “bubble” in the
circular dependency and prevents a circular deadlock. Bubble
router was originally proposed for off-chip networks where
buffers are not constrained. However, for an on-chip network
where buffers are more restricted, the bubble router requires
large amount of buffers and can be inappropriate for on-chip
network constraints.

Although deadlock avoidance guarantees deadlock will not
occur, it requires additional resources to guarantee deadlock
does not occur. If deadlock does not occur frequently, deadlock
recovery can lead to more efficient mechanism to handle
deadlock. Disha [6] is an adaptive deadlock recovery scheme
using a timer based detection algorithm and central deadlock
buffers for deadlock recovery. At each router, if a packet does
not make progress and the timer reaches its threshold, deadlock
is assumed to have occurred. A central deadlock buffer is used
for deadlock recovery as only one packet is processed for
deadlock recovery. However, Disha was developed for large-
scale networks and the constraints for on-chip networks are
very different. For example, Disha requires a more, complex
dynamically accessed queue while simple FIFO queues are
often used in on-chip networks. In this work, we propose
a deadlock recovery mechanism which can exactly detect
when deadlock occurs through the use of a deadlock token.
In addition, we use simple FIFO queues while relying on a
separate lightweight networks for deadlock recovery.

2) Frequency of deadlock occurrence: The design deci-
sion between deadlock avoidance and deadlock recovery is
dependent on the frequency of deadlocks. If deadlocks occur
very rarely, deadlock recovery is likely more appropriate while
deadlock avoidance can be more appropriate if deadlocks
occur more frequently. In Figure 3, we plot the saturation
throughput for a 8×8 torus network for different traffic pat-
terns using deadlock avoidance with virtual channels (2VCs)

26

0

0.1

0.2

0.3

0.4

0.5

0.6

2buf 4buf 8buf

Uniform Random

In
je

ct
io

n
 R

at
e

vc=2 Saturated

0

0.1

0.2

0.3

0.4

0.5

0.6

2buf 4buf 8buf

Tornado

In
je

ct
io

n
 R

at
e

vc=1 Deadlock

Fig. 3. Network injection rate when the network is saturated (vc = 2 data)
and the lowest injection rate when first routing deadlock is detected (vc = 1
data).

and different buffer size. For the same network, we remove
the virtual channel and measure the smallest offered load
when deadlock is detected. 2 Compared to deadlock avoidance
with VCs, the smallest load when a deadlock is detected
is at a higher load than deadlock avoidance network. Thus,
with the same resource, using deadlock recovery can not
only provide higher performance (i.e., higher throughput) but
the likelihood of deadlock occurring is low, especially below
network saturation. In addition, deadlock is only likely to
occur when traffic exceeds saturation and prior work have
shown that traffic in chip multiprocessor (CMPs) is relatively
small [13]. As a result, in this work, we avoid using VCs
to avoid routing deadlock in a 2D torus topology by using a
lightweight deadlock recovery network.

III. DEADLOCK RECOVERY IN TORUS

An overview of the proposed token-based deadlock recovery
mechanism is described in Table I. Deadlock recovery consists
of deadlock detection and deadlock recovery. Both parts uses
a separate network to reduce the impact of deadlock recovery
on the design of the baseline, data network.

A. Deadlock Detection

Two different tokens are used in the deadlock detection
process – a priority token and a detection token. A single
priority token exists within each dimension of the torus – e.g.,
for a 2D torus with radix-k, there are 2k priority tokens –
one for each ring in the network. The priority token circulates
within each ring and the router that has the priority token
(defined as the home router) can inject a detection token into
the network. 3 The home router generates a deadlock detection
token when a deadlock might have occurred – i.e., buffer is
full and a packet can not be injected. The detection token is
injected in to the separate, token network (Section III-D). If
the token is routed around the network and returns to the home
router without being dropped, a circular routing deadlock has
been detected and a deadlock recovery is needed.

The routing and dropping of the detection token is based
on the state of the router and the packets at the head of the
queue. If the flit at the head of the queue is destined for an

2We hold the amount of buffers constant in our comparison and thus, double
the buffer per VC.

3Multiple detection tokens can be implemented within each ring without
a priority token. However, this significantly complicates the recovery process
since multiple packets need to be removed from the network and injected into
the recovery network.

output which is full (i.e., there is no remaining buffer space
in the downstream router), we assume a routing deadlock is
still a possibility and detection token continues to be routed;
otherwise, the detection token is dropped. For example, in
Figure 4(a), assume port2 of R1 is full and a deadlock
detection token is generated. The token looks at the head of the
queue in port2 and determines which output port that packet
uses. If this packet’s next destination is R2, the token is also
routed to R2. Once the token arrives in R2, it looks at the
head of the queue in port1 (R2), and determines which output
it needs to be routed. Thus, the token follows the routing of
the head-of-the-queue flits.

Once a deadlock detection token is generated and routed in
the network, it can be dropped if the next routing direction
is the local ejection port or if the buffer of the target router
is not full. In addition, since we are assuming dimension-
ordered routing (DOR), the circular dependency cannot occur
between the dimensions – i.e., circular dependency cannot be
formed between both the X and the Y dimension. Thus, if the
routing direction of a flit changes dimensions, the token is also
dropped. These conditions signify that a circular dependency
can not occur; thus, the detection token is dropped to signify
that there is currently no deadlock. If a token is dropped, it
can signify no deadlock but it can also mean that deadlock
has not formed yet. Thus, for each home router, if a detection
token has not returned within k cycles where k is the radix of
the dimension, the home router assumes a deadlock has not
occurred and re-injects the priority token into the network.

B. Deadlock Recovery

If a deadlock detection token circles around and arrives at
the home node, a circular dependency exists and a routing
deadlock is detected. Once a deadlock has been detected,
deadlock is recovered by removing a packet involved in the
deadlock and injecting it into a separate, deadlock recovery
network. For deadlock recovery, a target packet is selected
and removed from the circular dependency. A target packet is
defined as as packet that is involved in the deadlock and is at
the head of the queue. We add the constraint that the flit that
is at the head of the queue is a head flit to maintain a simple
FIFO buffer structure.

Since the routing needs to be done at packet granularity, if
the target packet at the home router is not a head flit but a body
or tail flit, we drop the detection token and pass the priority
token to allow another node to generate a deadlock detection
token. If the home router has a head flit in the head of the
queue, we redirect the packet in to the separate, deadlock-
recovery network. Since a packet involved in the deadlock is
moved to another network, cyclical dependency is removed
and recovery from deadlock is completed.

However, what if all the other nodes are in the same
situation as head of the queues involved in the deadlock are
non-head flits? In the following section, we show that there is
at least one head flit in the head of the queue when a circular
routing deadlock occurs in torus. Thus, the deadlock recovery
described above can be implemented without requiring any

27

TABLE I
DEADLOCK RECOVERY WITH TOKEN ARCHITECTURE OVERVIEW

Priority token Detection token Deadlock Recovery Process

Initialization
One router within each ring of the 2D torus are
initialized to have the priority token for each ring
in the 2D torus network. Thus, total of 2k tokens
exist in the network.

Routing
The priority token is consumed by the current
router if deadlock is suspected. Otherwise, it is
forwarded to the next router if no deadlock is
suspected. In addition, the priority token is re-
injected into the network if the deadlock detection
token has not returned within k cycles

Generation
1) If the router has the priority token and
2) the buffer of the target router is full,
a deadlock detection token is injected into
the token network. The router that injects
a detection token is identified as the home
router.

Routing
The deadlock detection token received at the
current router is dropped 1) if the dimension
of the front flit changes where a front flit
is defined as the flit at the head-of-the-
queue that is suspected to be involved in the
deadlock, 2) if the front flit is destined to the
local ejection port at the current router or 3)
if the buffer of the target router is not full.
Otherwise, the token is continuously routed
in the token network.

Target Packet
If the deadlock detection token
returns to the home router, dead-
lock is detected. A target packet
that can be removed from the cir-
cular deadlock is identified. Tar-
get packet is defined as a packet
involved in the circular deadlock
and the head flit of the packet is at
the head of the router input buffer.

Recovery
The target packet is removed and
injected into the recovery net-
work, and routed to its destina-
tion.

complex buffer management (such as a DAMQs) or restricting
buffer usage by allow only once packet to use a buffer at a
given time.
C. Characterization of Routing Deadlock in Torus Network

In this section, we show how when a circular routing
deadlock occurs in a 2D torus network, there is at least one
buffer involved in the deadlock which is occupied by a head
flit of a packet. We first show how this will occur in a 1D
torus (or a ring) topology and then, extend it to a 2D torus
network.

1) Routing Deadlock in 1D Torus:
Claim. If a routing deadlock occurs in 1D torus, at least

one flit in the head of the queue is a head flit.
Proof. Without losing generality, assume a unidirectional

ring network as shown in Figure 4. Assume port 2 is the
injection queue from the local, terminal node and port 1 is
connected to a neighbor node. If all packets in the network are
single-flit packets, all flits are head flits and proof is trivial.
In the rest of this proof, we assume multi-flit packets. When
routing deadlock occurs in this 1D ring, the following two
observations can be made.

• All of the buffers involved in the circular dependency are
completely full.

• Flits of different packets are never interleaved since unit
of routing is a packet and body/tail flit must follow the
head flit.

Based upon these observation, there are two different deadlock
scenarios as shown in Figure 4.
(a) One ore more injection port is involved in deadlock:

Circular dependency between the buffers can occur with
one or more injection ports (port 2) involved in the
deadlock as shown in Figure 4(a). When such routing
deadlock occurs, the router where the injection port is
involved in the deadlock will have another queue that is
involved in the deadlock. In this example, this refers to
the queue for port 1 in router R1 (i.e., R1 q1) .
Based on the second observation above, since packets can
not be interleaved and R1 q2 is injecting a packet for

𝑅0 𝑅1 𝑅2 𝑅3

Port 2 Port 2

Port 1 Port 1

Port 2 Port 2

Port 1 Port 1

(a)

𝑅0 𝑅1

Port 2 Port 2

Port 1 Port 1
𝑅2

𝑷

𝑅3

Port 2 Port 2

Port 1 Port 1

(b)
Fig. 4. Routing deadlock scenarios in a 1D torus. Different color represents
different packets.

R2 q1, the head of the queue R1 q1 must be a head flit.
If the head of queue R1 q1 is not an head flit, it either
means the flits of two different packets are interleaved
in R2 q1 (which cannot occur) or the destination of the
packet is R1 and the packet is currently being ejected out
the network – in which case, there would be no circular
deadlock.

(b) No injection port is involved in deadlock:
As shown in Figure 4(b), assume that no injection port
buffer is involved in the deadlock. If such deadlock occurs,
no movement of packets can be made. Assume the last
packet injected into the network to cause the deadlock
was P – inject from R1 into R2 q1. Since deadlock
occurred after the injection of this packet and since packet
interleaving cannot occur, for similar reason as above, the
head of the queue (R1 q1) must also be an head flit.

Thus, based on these descriptions, we show that when a
circular routing deadlock occurs, there exists at least one queue
where the head of the queue is a head flit of a packet.

2) Routing Deadlock in 2D Torus: In this work, we assume
dimension-ordered routing (DOR) in a 2D torus network. With
this DOR such as XY routing, dependencies cannot occur from
packets in the Y dimension to the X dimension. Thus, all the
circular dependencies occur within each dimension – either
the X dimension rings or within the Y-dimension rings. Thus,
the proof described in Section III-C1 can be easily generalized
to 2D torus with DOR routing.

28

R

R

R

R

R

R

R

R

R

R
Data
network

Token
network

Data recovery
network

Fig. 5. Network architecture with three parallel networks including the data
network, token network, and deadlock recovery network.

D. Deadlock Token Architecture

Figure 5 shows the structure of the deadlock-recovery token
network consisting of three networks – the data network, token
network, and deadlock recovery network. The token network is
a simple, two-bit network and is connected as a ring network
(or a 1D torus network) and not a 2D torus network since
the token will only traverse within a given dimension. The
token network is further simplified as a bufferless network
since there is only one token inflight and there is no contention
in the network. A narrow data recovery network is also added
in parallel. Once a packet has been removed from the data
network, it is injected into the recovery network and routed to
its destination. Since the packet’s destination can be in another
dimension, the data recovery network needs to be a 2D torus
topology. Routing deadlock also needs to be prevented in the
data recovery network but we limit the number of data packet
that is injected into data recovery network to one within each
ring – thus, a simplified ring microarchitecture [14] can be
extended to 2D torus data recovery network. The two networks
(token network and the recovery network) add additional area
but we show in Section IV-C that there is an overall reduction
in area since virtual channel for routing deadlock is removed.

IV. EVALUATION

We evaluate the performance of our deadlock recovery
scheme with tokens (DRT) and compare with a deadlock
avoidance scheme using virtual channels (VCDOR) and bub-
ble router (BDOR) for 8-ary 2-cube torus network. We used
a cycle-accurate network simulator [10] and modified it to
implement the bubble router and our proposed deadlock re-
covery scheme. Both open-loop simulation and closed-loop
simulations are used to thoroughly evaluate the different
schemes.
A. Latency-throughput curve

We compare the latency-throughput of the alternative dead-
lock mechanisms across different synthetic traffic patterns
in Figure 6, 7. All three alternatives use dimension-ordered
routing (DOR) and we assume a single-cycle router delay.
DRT and VCDOR use wormhole flow control while BDOR
requires virtual cut-through flow control. VCDOR requires 2
VCs to avoid routing deadlock while the other two only require
a single VC. To maximize the buffer utilization with 2VCs, we
do not use the simple dateline approach of buffer partition but
adopt a routing algorithm that balances the usage of buffers
while still avoiding deadlock [10]. The total amount of buffer

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4

La
te

n
cy

Injection Rate

VCDOR 2vc 2buf

BDOR 1vc 4buf

DRT 1vc 4buf

0

20

40

60

80

100

0 0.1 0.2

La
te

n
cy

Injection Rate

VCDOR 2vc 2buf

BDOR 1vc 4buf

DRT 1vc 4buf

(a) (b)

0

20

40

60

80

100

0 0.1 0.2

La
te

n
cy

Injection Rate

VCDOR 2vc 2buf

BDOR 1vc 4buf

DRT 1vc 4buf

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5

La
te

n
cy

Injection Rate

VCDOR 2vc 2buf

BDOR 1vc 4buf

DRT 1vc 4buf

(c) (d)
Fig. 6. Comparison for (a) uniform random, (b) tornado, (c) bit reversal,
and (d) bit complement traffic pattern in the 8x8 torus network with 4 buffer
and 1-flit packets.

0

20

40

60

80

100

0 0.03 0.06 0.09

La
te

n
cy

Injection Rate

VCDOR 2vc 4buf

BDOR 1vc 8buf

DRT 1vc 8buf

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04

La
te

n
cy

Injection Rate

VCDOR 2vc 4buf

BDOR 1vc 8buf

DRT 1vc 8buf

(a) (b)

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05 0.06

La
te

n
cy

Injection Rate

VCDOR 2vc 4buf

BDOR 1vc 8buf

DRT 1vc 8buf

0

20

40

60

80

100

0 0.03 0.06 0.09 0.12

La
te

n
cy

Injection Rate

VCDOR 2vc 4buf

BDOR 1vc 8buf

DRT 1vc 8buf

(c) (d)
Fig. 7. Comparison for (a) uniform random, (b) tornado, (c) bit reversal, and
(d) bit complement traffic pattern in the 8x8 torus network with 8 buffer and
4-flit packets. Injection rate is measured in packets per cycle for each node.

is assumed to be 8 entries per physical port – thus, with
VCDOR, the buffers are partitioned among the two VCs. We
evaluate with single-flit packets to provide a fair comparison
since using a large packet size would result in unfavorable
results for BDOR since it requires VCT flow control. We also
show results with 4-flit packets to evaluate the impact of large
packets.

Figure 6 shows the results with single-flit packets when the
buffer is limited to 4 entries per router port while Figure 7
shows the result when the buffers are assumed to be 8
entries with 4-flit packets. In our simulations, no deadlock was
detected with DRT for the network loads that we evaluated.
For single-flit packets, BDOR and DRT outperforms VCDOR
as they have deeper buffers. However, since BDOR requires
twice the size of the maximum packet buffer entries before
sending packets, it has poor performance with 4-flit packets.
DRT is able to outperform VCDOR with 4-flit packets since
it has deeper buffers as virtual channels are not needed.

B. Batch Traffic

We also compare the alternative schemes using the batch
model as described in [15]. Unlike the latency-throughput
curves which is an open-loop simulation, batch model is a

29

2.7

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

4 buf 8 buf 16 buf 8 buf 16 buf

8x8 Torus 1flit 8x8 Torus 4flit

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

VCDOR 2vc

BDOR 1vc

DRT 1vc

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

4 buf 8 buf 16 buf 8 buf 16 buf

8x8 Torus 1flit 8x8 Torus 4flit

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

VCDOR 2vc

BDOR 1vc

DRT 1vc

2.7

(a) (b)

Fig. 8. Closed loop simulation results for (a) uniform random and (b) bit
complement traffic pattern.

closed-loop simulation methodology that captures dependen-
cies between messages by modeling request-reply traffic and
measures the overall execution time. We use a bath size of
1000 and assume each node has a maximum outstanding
request of 16. Figure 8 shows the comparison of the nor-
malized execution time to VCDOR as the buffer size and
the packet size is varied (lower value is better). With this
approach, we are able to stress the network with large number
of packets and evaluate the impact of deadlock recovery. For
large buffers (compared with packet size), results of BDOR
and DRT are very comparable but for large packets, the BDOR
results in significant performance degradation. Compared to
VCDOR, DRT reduces the execution time by approximately
8% and 38% on uniform random and bit complement traffic,
respectively.
C. Area comparison with Deadlock Avoidance

For applications that we evaluated earlier in Section II,
routing deadlock did not occur when evaluated with DRT and
the performance of VCDOR is nearly identical to DRT. Thus,
we compare the cost of the two approaches by comparing the
amount of buffers required. For VCDOR, additional VC buffer
is required in each router (bw) where b is buffer depth and w
is datapath width. For DRT, the additional buffers required
are from the token network (wtok) and the recovery network
(brecwrec). Using w = 128 and b = 4, DRT results in over
70% reduction in additional buffers required to prevent routing
deadlock and reduces on-chip network area by approximately
40%. A detailed router area comparison is shown in Table II
based on the synthesis results using TSMC 45nm technology.
The baseline data network is reduced by approximately 43%
since the amount of buffers is reduced by half with the removal
of the additional VCs. The token network adds very negligible
area while the data recovery adds overhead. However, the total
router area using deadlock recovery is reduce by approxi-
mately 24% compared with deadlock avoidance with VCs. We
assume a baseline data network with 128 bits datapath while
the data recovery network was 16 bits. If the width of the data
recovery network is further reduced, the overhead of deadlock
recovery network can be further reduced.

V. CONCLUSION

In this work, we showed how the 2D torus topology can
provide a more cost-efficient topology compared with a 2D
mesh network by relying on reduced hop count and reduced

TABLE II
ROUTER AREA COMPARISON BETWEEN DEADLOCK AVOIDANCE AND

DEADLOCK RECOVERY.

VCDOR DRT
data network 54186.73 31768.75
token network N/A 1824.32
deadlock recovery network N/A 8274.22
Total (um2) 54186.73 41867.31

channel width. However, the torus topology can create routing
deadlock and we proposed token-based deadlock recovery
for on-chip networks that exploits the characteristics of on-
chip network – abundant wires but reduced buffers. Routing
deadlocks can be exactly detected with a circulating token
and a separate deadlock recovery network is used to recover
from deadlocks when it occurs. This work focused on routing
deadlock in a torus network but deadlock can still occur
because of high-level protocol. We plan to expand this work
and explore how similar recovery techniques can be applied
to high-level protocol deadlocks.

ACKNOWLEDGMENT

This research was supported by the MKE (The Ministry
of Knowledge Economy), Korea, under the ITRC(Information
Technology Research Center) support program supervised by
the NIPA(National IT Industry Promotion Agency)

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: on-chip intecon-
nection networks,” in Proc. of the 38th conference on Design Automation
(DAC), 2001, pp. 684–689.

[2] D. Wentzlaff, et al, “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, pp. 15–31, September 2007.

[3] M. Mirza-Aghatabar, et al.,“An empirical investigation of mesh and torus
noc topologies under different routing algorithms and traffic models,”
Euromicro Symp on Digital Systems Design, , vol. 0, pp. 19–26, 2007.

[4] J. Balfour and W. J. Dally, “Design tradeoffs for tiled cmp on-chip
networks,” in ICS, Cairns, Queensland, Australia, 2006, pp. 187–198.

[5] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast
and accurate noc power and area model for early-stage design space
exploration,” in Proceedings of Design Automation and Test in Europe
(DATE), 2009.

[6] K. Anjan and T. Pinkston, “An efficient, fully adaptive deadlock recovery
scheme: Disha,” in Proc. of the International Symposium on Computer
Architecture (ISCA), Jun. 1995, pp. 201 – 210.

[7] M. M. K. Martin, et al., “Multifacet’s general execution-driven multi-
processor simulator (gems) toolset,” SIGARCH Computer Architecture
News, vol. 33, no. 4, pp. 92–99, 2005.

[8] S. C. Woo, et al., “The SPLASH-2 programs: Characterization and
methodological considerations,” in ISCA, 1995, pp. 24–36.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: characterization and architectural implications,” in PACT, 2008,
pp. 72–81.

[10] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA: Morgan Kaufmann, 2004.

[11] W. Dally and C. Seitz, “Deadlock-free message routing in multiprocessor
interconnection networks,” Computers, IEEE Transactions on, vol. C-36,
no. 5, pp. 547 –553, May 1987.

[12] V. Puente, et al., “Adaptive bubble router: a design to improve per-
formance in torus networks,” in Proc. of International Conference on
Parallel Processing, 1999, pp. 58 –67.

[13] S. Cho and L. Jin, “Managing Distributed, Shared L2 Caches through
OS-Level Page Allocation,” in MICRO, Orlando, FL, 2006, pp. 455–468.

[14] J. Kim and H. Kim, “Router microarchitecture and scalability of ring
topology in on-chip networks,” in Proc. of the 2nd Intl Workshop on
Network on Chip Architectures (NoCArc), New York, NY, 2009.

[15] H. Kim, et al., “On-chip network evaluation framework,” in Proc.
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), New Orleans, LA, 2010.

30

