
Multi-GPU System Design with Memory Networks

Gwangsun Kim, Minseok Lee, Jiyun Jeong, John Kim

Department of Computer Science
KAIST

{gskim, lms135, cjy9037, jjk12}@kaist.ac.kr

Abstract—GPUs are being widely used to accelerate different
workloads and multi-GPU systems can provide higher perfor-
mance with multiple discrete GPUs interconnected together.
However, there are two main communication bottlenecks in
multi-GPU systems – accessing remote GPU memory and
the communication between GPU and the host CPU. Recent
advances in multi-GPU programming, including unified virtual
addressing and unified memory from NVIDIA, has made
programming simpler but the costly remote memory access still
makes multi-GPU programming difficult. In order to overcome
the communication limitations, we propose to leverage the
memory network based on hybrid memory cubes (HMCs)
to simplify multi-GPU memory management and improve
programmability. In particular, we propose scalable kernel
execution (SKE) where multiple GPUs are viewed as a single
virtual GPU as a single kernel can be executed across multiple
GPUs without modifying the source code. To fully enable
the benefits of SKE, we explore alternative memory network
designs in a multi-GPU system. We propose a GPU memory
network (GMN) to simplify data sharing between the discrete
GPUs while a CPU memory network (CMN) is used to simplify
data communication between the host CPU and the discrete
GPUs. These two types of networks can be combined to create
a unified memory network (UMN) where the communication
bottleneck in multi-GPU can be significantly minimized as both
the CPU and GPU share the memory network. We evaluate
alternative network designs and propose a sliced flattened
butterfly topology for the memory network that scales better
than previously proposed alternative topologies by removing
local HMC channels. In addition, we propose an overlay
network organization for unified memory network to minimize
the latency for CPU access while providing high bandwidth for
the GPUs. We evaluate trade-offs between the different memory
network organization and show how UMN significantly reduces
the communication bottleneck in multi-GPU systems.

Keywords-Multi-GPU; Hybrid Memory Cubes; Memory net-
work; Flattened butterfly

I. INTRODUCTION

With the significant amount of computational capability

available, modern GPUs (Graphics Processing Units) are not

only used for graphics workloads, but are also commonly

used with CPUs to accelerate general-purpose scientific,

engineering and business workloads [1]. The GPU requires

a significant amount of memory bandwidth to supply data

to the large number of computing cores. To address this

challenge, NVIDIA has announced future GPU systems with

3D stacked memory [2]. In this work, we address how future

GPU systems can exploit 3D stacked memory, based on hy-

brid memory cubes (HMCs) [3], [4]. In particular, we focus

on multi-GPU systems and explore the opportunities and

challenges with a memory network [5], [6] interconnecting
the memory modules.

One of the challenges in multi-GPU programming is

data sharing between GPUs. The unified virtual addressing

(UVA) [7] introduced by NVIDIA helps to simplify access-

ing data from remote GPU memory with a single virtual

address space that is shared by the CPU and the GPUs.

The unified memory [8] builds on UVA to further simplify

programming as device memory allocation and data transfer

are automatically managed. However, these approaches do

not remove the communication bottleneck in multi-GPU

systems, which includes data transfer between the host

CPU and the GPUs as well as the high cost of accessing

remote GPU’s memory. To provide high bandwidth to GPUs,

NVIDIA and IBM recently introduced NVLink [9] that

provides high-bandwidth point-to-point channels between

GPUs and the CPU.

In this work, we propose to achieve similar goals by

introducing scalable kernel execution (SKE) and leveraging

the memory network. SKE abstracts all of the GPUs in a

system as a single virtual GPU to simplify programmability
of multi-GPU systems. SKE leverages the same source code

for single-GPU but takes advantage of the multi-GPU system

by distributing the thread blocks or CTAs (Cooperative

Thread Arrays) in a kernel across the multiple GPUs. Unlike

prior software-based approaches which require a complex

runtime system to analyze the memory access patterns and/or

duplication of data, SKE requires a runtime system which

simply distributes the kernels across the different GPUs and

a single kernel can be seamlessly executed across all the

GPUs.

SKE simplifies porting single-GPU workloads to multi-

GPU systems but does not remove the communication

bottleneck in the system. Thus, we propose leveraging a

memory network to reduce the communication bottleneck. A

memory network [5], [6] can be defined as a network that in-
terconnects the memory modules (i.e., HMCs) that belong to

different endpoint nodes (i.e., GPU or CPU nodes) together.

Compared to the traditional multi-GPU system topology

where GPUs were connected through PCIe channels with

limited bandwidth to remote GPU memory [10], [11], the

memory network provides GPUs with high bandwidth to the

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.55

484

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.55

484

remote GPU’s memory – without having to communicate

through the remote GPUs. We explore alternative memory

network organization in a multi-GPU system that reduces the

communication bottleneck between the CPU and the GPUs

as well as the cost of accessing remote GPU memory.
One of the challenge in memory network is the relatively

small number of channels available in the routers (or the

HMCs) – e.g., current HMCs only have 8 channels. These

channels are sufficient to create a low-radix topology such

as a ring or a 2D mesh topology but result in higher latency

and cost (network energy). As a result, the challenge is to

scale the network with a high-radix topology [12] while

providing high bandwidth to the HMCs. We show that with

proper memory address interleaving for local HMCs directly

connected to the GPUs, we minimize the need for local path

diversity among the HMCs directly connected to the GPUs

and propose the sliced flattened butterfly (sFBFLY) topology.
To minimize latency for CPU in the memory network, we

show how an overlay network organization can be exploited
to minimize latency for CPU while still providing high

bandwidth for GPUs.
In particular, the contribution of this work includes the

following:

• We propose a scalable kernel execution (SKE) model

for multi-GPU system to simplify programmability by

using a collection of GPUs as a single virtual GPU.
• To overcome the communication bottleneck for multi-

GPU systems and SKE, we explore the design space

of alternative memory network organization, including

GPU memory network (GMN), CPU memory network

(CMN), and unified memory network (UMN).

• We exploit the communication patterns and memory

mapping to propose a sliced flattened butterfly (sF-
BFLY) topology to provide high bandwidth and better

scalability by removing local path diversity. To mini-

mize latency for the CPU in a unified memory network,

we propose an overlay network organization.

II. BACKGROUND / RELATED WORK

A. Conventional Multi-GPU Systems
Multi-GPU systems are classified into two categories [13]

– a shared GPU system that consists of a single host with

multiple GPUs directly connected via PCIe, and a distributed

GPU system that consists of multiple hosts each with its own

single or multiple GPUs. This work focuses on the shared

GPU system, but our proposed techniques can be leveraged

for the multiple GPUs within each node of a distributed

GPU system. Traditionally, multiple GPUs in a single node

are connected with PCIe switches as shown in Fig. 1(a),

creating a star or tree topology [14]. Systems can be built

using high-performance PCIe switches but the bandwidth

among GPUs is limited to that of a single PCIe channel.

For many memory-intensive workloads, this limited band-

width can limit scalability. In order to avoid the bottleneck,

…
MEMMEM MEM

…
MEMMEM MEM

…
MEMMEM MEM

GPU GPU

IO
Hub

CPU

PCIe Switches

…
…

MEMMEM MEM
…

MEMMEM MEM
…

MEMMEM MEM

GPU
…

GPU

IO
Hub

CPU

… …

NVLinkLink

PCIe Switches

(a) (b)

Figure 1. Multi-GPU system design based on (a) conventional PCIe
interconnect and (b) recently proposed NVLink [9] for future NVIDIA
GPUs.

the programmer needs to appropriately partition the data

across GPUs and managing shared data among GPUs is

a challenge. Recently, NVIDIA announced NVLink [9] for

next generation GPUs (Fig. 1(b)) to provide high bandwidth

between the CPU and multiple GPUs. We address the same

problem in this work but with a different approach that

leverages memory network.

B. Hybrid Memory Cubes and Memory Network

A hybrid memory cube (HMC) [4] is a 3D-stacked

chip with multiple DRAM layers on top of a logic layer

using Through-Silicon Vias to interconnect different layers

(Fig. 2). Each DRAM layer is partitioned into independent

segments and the segments in the same vertical slice are

grouped into a vault. The vault includes a vault controller
at the logic layer that controls access to the DRAMs and

handles requests from external devices. Fig. 3 compares

the conventional GDDR interface with the HMC interface.

The GPU and HMCs communicate with packetized high-

level request/response messages via I/O channels, whereas

in GDDR, low-level DRAM commands are sent. To support

a high throughput, high-speed signaling with SerDes (Se-

rializer/Deserializer) is used for the I/Os. The logic layer

provides switching capability to route incoming packets

to vault memory controllers or I/O ports, if the packet’s

destination is another HMC. Thus, by leveraging an HMC as

a router, we can create a memory network that interconnects

multiple HMCs and connect it to CPUs or GPUs as shown

in Fig. 2.

The memory-centric network (MCN) [5] based on HMCs

was proposed to interconnect multiple CPUs to pro-

vide flexible processor bandwidth utilization. A Processor-

centric network (PCN) dedicates some processor channels

to processor-to-processor communication and others for

processor-memory interface as commonly done in current

system interconnects such as Intel QPI [15] or AMD

HyperTransport [16]. In comparison, MCN dedicates all

processor channels to connect to local HMCs (the HMCs
directly connected to a given processor) and the HMCs

from different processors are interconnected to form a

memory network. Thus, all processor-to-processor packets
as well as processor-to-remote memory packets are routed

via the memory network through local HMCs. Although the

485485

HMC
…

…

Intra-HMC Network

Vault
CTRL

Vault
CTRL

Vault
CTRL

I/O I/O I/O

…

…

Logic Layer

DRAM
layers
Logic
layer

Figure 2. The Hybrid Memory Cube (HMC) architecture.

GDDRADDR
CMD

DATA Abstract
Message

High-speed signalingnaling

GPU GPU

(a) (b)
Figure 3. Interface between GPU and (a) GDDR and (b) HMC memory
devices.

memory network was proposed with HMCs, the concept

of memory network is not necessarily limited to HMCs as

other 3D stacked memory structures can also be leveraged

in a memory network. Different topologies for HMCs have

been proposed [17], [18], but they focus on single-processor

systems and are not necessarily scalable to multi-GPU sys-

tems. Some GPUs support SLI [19] and Crossfire [20] that

provides additional bandwidth among GPUs, but they are not

available for GPGPU workloads. The NVLink [9] design

for future GPUs provide higher bandwidth among GPUs

but the topologies are limited to processor-centric network

(PCN). In this work, we explore how the memory network

can be leveraged in a multi-GPU system to overcome the

communication bottleneck and explore alternative memory

network organization.

C. Multi-GPU Programming

Scaling a GPGPU workload written for a single GPU to

multiple GPUs is not necessarily trivial. The divide-and-

conquer approach can be used to split a large problem

into multiple sub-problems, and each sub-problem can be

executed on one of the GPUs [13]. However, one challenge

is that each GPU has its own memory attached to it and

accessing a remote memory device is costly. In order to

achieve high performance, manual division or duplication

of shared data is required. Additional optimization effort

is needed to overlap computation with data transfer, which

requires data dependency to be tracked. The outputs of each

GPU also have to be merged to produce the final result.

Recent GPUs ease this difficulty by providing Unified Vir-

tual Addressing with capability of GPUs to directly access

another GPU’s device memory without the intervention of

a CPU [7]. However, GPU-to-GPU bandwidth is limited to

that of a single PCIe channel and is significantly smaller than

the bandwidth to access local device memory. Furthermore,

unoptimized data transfer over PCIe can increase GPU idle

time and synchronization delay [14].

Many libraries including GPUSs [21], CUBLAS [22],

MAGMA [23], ArrayFire [24] and Maximus [25] have been

developed for multi-GPU systems to improve programmabil-

ity and provide high performance. However, these libraries

are limited to a specific programming model or domain

such as linear algebra and signal/image processing and thus

are not sufficient for handling a diverse set of general

workloads. There are other software approaches for general

workloads based on existing multi-GPU hardware [26], [27],

[28]. However, their limitation is that shared data have to

be duplicated at each GPU, which increases data transfer

time accordingly due to the PCIe bottleneck. There are

different frameworks and libraries to help simplify multi-

GPU programming [29], [30], [31], [32], [33], but they often

require additional programmer effort to port single-GPU

applications to multi-GPU systems. Recently, heterogeneous

system architecture (HSA) [34] has been proposed to reduce

the communication latency between CPU and GPU, and

improve the programmability for heterogeneous workloads.

However, HSA has mostly focused on single chip heteroge-

neous systems where the constraints are different from the

multi-GPU systems that we explored. In the next section,

we describe our proposed architecture that improves the

programmability and removes the scalability bottleneck of

current multi-GPU systems.

III. SCALABLE KERNEL EXECUTION (SKE)

We describe scalable kernel execution (SKE) which im-

proves the programmability of multi-GPU systems by pro-

viding a collection of GPUs as a virtual GPU and does not
require modifying the source code. By leveraging unified

virtual addressing, we rely on a simplified runtime that

distributes a kernel across the different discrete GPUs for

SKE. However, SKE does not overcome the communication

bottleneck in a multi-GPU system and we describe how the

memory network (Section IV) helps to significantly reduce

this bottleneck. We focus on a single kernel executed across

multi-GPU system but SKE is not necessarily limited to a

single kernel but can also be extended to support concurrent

kernel execution [35] and dynamic parallelism [36]. We

leave the extension of SKE to those features to be part of

future work.

A. Kernel Execution Model

As described earlier, there are different approaches to

leveraging multi-GPU systems but they require significant

programmer effort to ensure correctness and/or high perfor-

mance. To overcome these challenges, we propose scalable
kernel execution (SKE). In SKE, a kernel is executed across
multiple GPUs without any modification to the source code

for a single GPU or any input from the programmer. A

baseline kernel execution in a single GPU system is shown

in Fig. 4(a). On current multi-GPU systems, a kernel needs

to be partitioned into separate kernels, shown as Kernel A′

in Fig. 4(b). This can be done manually or automatically

486486

CTA

CTA

CTA

Kernel A

GPU 0

(a)

CTA

(b)

GPU 0 GPU 1

Kernel A’

(c)

GPU 0 GPU 1

Kernel A

CTA

CTA

CTA

CTA

CTA

CTA

CTA

CTA

CTA

CTA

CTA

CTA

CTA

CTA

CTA

CTA

CTA

CTA

CTA

CTA

Kernel A’

SM SM

scheduler

SM SM

scheduler

SM SM

scheduler

SM SM SM SM

scheduler scheduler

Virtual GPU

Figure 4. (a) Single GPU execution model, (b) multi-GPU system with
Kernel A partitioned into two instances of Kernel A′, and (c) the proposed
SKE.

GPU command queue

SKE
Runtime

GPU0

GPU1

GPUN-1

…

Virtual GPU command queue

Virtual GPU

Application
(unmodified
single-GPU

version)

Orignal
kernel

meta data

Orignal
kernel

meta data
+ CTA range

Figure 5. GPU command queues of the SKE runtime.

through different libraries or a runtime system. In compari-

son, SKE (Fig. 4(c)) enables a kernel to be executed across

multiple GPUs without any partitioning of the kernel.

The SKE runtime system provides users with a view

of a single virtual GPU that encapsulates multiple GPUs.

Thus, instead of directly issuing kernel launch commands

to the queues of multiple GPUs, the application launches

unmodified kernels written for a single-GPU into the virtual

GPU command queue as shown in Fig. 5. The runtime

then generates multiple kernel launch commands, one for

each GPU. In addition, CTA information is added to each

command that specifies the range of CTAs assigned to the

GPU. The GPU then executes the CTAs of the kernel within

the specified range. The scheduling of the CTAs to the

different GPUs is discussed in the following section.

B. CTA Scheduler

Although SKE provides a single virtual GPU, some of the

resources are partitioned across the different physical GPUs.

One such resource is the scheduler that distributes the CTAs

to each core or stream multiprocessor (SM) in each GPU.

For a single GPU system, the scheduler allocates all of the

CTAs for a given kernel across all of the cores in the GPU

(Fig. 4(a)). However, with virtual GPU, the CTA assignment

needs to be done appropriately across the multiple GPUs to

maximize performance and fully utilize all of the cores. A

GPU 0 GPU 1

Kernel A

CTA

CTA

SM

Global scheduler

SM

CTA

CTA

CTA

CTA

CTA

CTA

Local scheduler Local scheduler

SM SM

Figure 6. A two-level global scheduler that consist of a global and a local
scheduler in a multi-GPU system.

global two-level CTA scheduler is shown in Fig. 6, where the

centralized, global scheduler is responsible for distributing

CTAs to each GPU, and a local scheduler distributes the

CTAs within each GPU. However, such organization requires

the global scheduler to be located either in the CPU or in one

of the GPUs acting as a master GPU and can add significant

overhead.

Instead of a complex centralized, two-level scheduler, we

leverage a static CTA assignment policy across the different
GPUs [26]. For n GPUs, the CTAs are partitioned into

n groups and statically allocated to each GPU in chunks

such that first 1/n CTAs are assigned to GPU0, the next

1/n CTAs to GPU1, and so on. For workloads with multi-
dimensional CUDA grid, the CTA index is first flattened into

one dimension before partitioning. We compared this assign-

ment with fine-grained round-robin CTA assignment [37]

across all cores of all GPUs and observed that our static

assignment gives higher performance (8% overall) for our

evaluated workloads due to memory access locality. In

typical CUDA workloads with a regular memory access

pattern, adjacent CTAs tend to access neighboring memory

regions and thus, assigning them to the same GPU can

improve cache access locality. In our evaluation, the cache

hit rate was increased by up to 43% and 20% for L1 and

L2 cache, respectively. Thus we assign CTAs to GPUs in

chunks based on static assignment.

We also compared the static CTA assignment to a dynamic
two-level scheduler that complements the static assignment

with CTA stealing – after initial CTA assignment, once a

core becomes idle, the global scheduler steals CTAs from
other GPUs that have not started execution and schedules

them in the idle core. However, based on our evalua-

tion, the performance improvement by dynamic scheduling
with CTA stealing was trivial (less than 1% improve-

ment). The dynamic CTA scheduling would only increase

overall performance if there was a significant CTA load-

imbalance [37]. Since load-imbalance significantly decreases

with large number of CTAs in a workload, static assignment

was sufficient. For the rest of this work, we assume a static

CTA assignment with SKE.

487487

C. Memory Address Space Organization

With the memory network, a GPU can access any HMC

in the system without going through other GPUs. Recent

GPUs support virtual memory and thus, to support SKE, all

of the GPUs in the system need to have the same copy

of the page table to support the same virtual-to-physical

address translation. The runtime system running in the CPU

can keep the page tables in the different GPUs consistent,

and the address translation can be done by MMUs (Memory

Management Units) within each GPU [38], [39]. Thus, a

request with a physical address from the GPU is injected

into the memory network and routed appropriately to the

destination HMC.

Another issue is how to map the physical address space to

the different HMCs. In this work, we assume a page-based

memory mapping as data are mapped at page granularity

across the different HMC clusters – where a cluster consists

of local HMCs for each GPU. Within each cluster, we

use fine-grained cache line interleaving across the differ-

ent HMCs for a given page to load-balance traffic [40].

Our memory mapping is not necessarily the most optimal

mapping policy and it remains to be seen how to optimize

memory mapping to increase locality in the memory net-

work traffic and improve overall performance. The specific

memory mapping used in our evaluation is described in

Section VI-A.

D. Memory Hierarchy

Modern GPUs have atomic units in L2 cache to accelerate

atomic memory operations [41]. This causes an issue when

multiple GPUs share a memory network with SKE, since

multiple atomic units exist; one within each GPU. To avoid

incorrect behavior of atomic operations, we assume the

atomic operations are not done in the GPU, but are moved

to the HMC logic layer, near the vault memory controllers.

HMCs [3] provide support for atomic transactions on the

logic die and thus, we handle the atomic transactions in the

HMCs instead of in the GPU. All atomic operations that

occur to a cache line in L1 or L2 first evicts the line.

Current GPUs do not support cache coherence 1 be-

tween on-chip caches [43], [42] and CUDA memory models

assumes relaxed memory consistency as data consistency

across different CTAs within a kernel is not assumed [44]. In

our multi-GPU system with SKE, we also assume the same

relaxed memory consistency model; however, with caches

distributed across the different GPUs, the memory model

can be violated if write-back cache policy is used in the last

level on-chip cache. As a result, for global memory access,

we assume a write-through, write no-allocate policy for both

L1 and L2.

1Recent work has investigated providing cache coherence in a single
GPU [42]. Providing efficient cache coherence in the SKE-enable multi-
GPU system is an interesting topic but we leave it as part of future work.

0
2
4
6
8

10

0% 50% 75%

N
or

m
al

ize
d�

ke
rn

el
�

ru
nt

im
e

Amount�of�remote�memory�access

normalized�kernel�runtime
11.7

Amount�of�remote�memory�access

0
1
2
3
4
5
6

0
0.2
0.4
0.6
0.8

1
1.2

0% 50% 75%

N
or

m
al

ize
d�

la
te

nc
y

N
or

m
al

ize
d�

ke
rn

el
�ru

nt
im

e,
N

or
m

al
ize

d�
AM

AT

Amount�of�remote�memory�access

normalized�network�latency
normalized�AMAT

N
or

m
al

ize
d�

ke
rn

el
�

ru
nt

im
e

(a) (b)

Figure 7. Kernel runtime of vectorAdd on (a) an NVIDIA M2050 multi-
GPU system and (b) simulated GPU memory network (Section IV-B2) as
the amount of remote memory access is varied by distributing data across
multiple GPUs.

IV. MULTI-GPU SYSTEM INTERCONNECT

In this section, we describe the multi-GPU system ar-

chitecture to support SKE efficiently. We first describe the

overhead of current multi-GPU systems to support SKE

because of the high cost of accessing remote memory. We

then describe the alternative memory network organizations

for multi-GPU systems.

A. Conventional Multi-GPU Systems

To illustrate the cost of accessing remote memory data,

we evaluate vectorAdd [45] workload on single GPU

while the data are distributed across the different GPU

DRAMs. The results shown in Fig. 7(a) are based on an

evaluation using multiple NVIDIA M2050 GPUs. The kernel

is executed on a single GPU (e.g., GPU0 in Fig. 9(a)) while

the data are distributed across 1, 2, or 4 GPU memories

– e.g., if 2 GPU memories are used, 50% of the data are

located on the local GPU and 50% of the data are located

on remote GPU memory while for 4 GPUs, only 25% of

the data are in local GPU memory. The performance is

normalized to the execution time when all the data are

located on a single local GPU memory. Since memory used

is distributed across other GPUs, the performance degrades

by up to 11.7× because of the high cost of remote memory

access through PCIe.

However, unlike the conventional multi-GPU system that

communicates through the PCIe switch and the remote GPU,

the memory network enables direct sharing of the data

and remote memory access does not significantly degrade

performance. The result of executing the same vectorAdd
on memory-network based multi-GPU system 2 is shown in

Fig. 7(b). Compared to when all the data were placed at

local memory modules, the workload performance actually

increased with lower execution time when 50% of the

data were placed at remote GPU memory. Since the data

are distributed across more memory modules, the network

latency increases with higher hop count – in this particular

case, it results in approximately 50% increase in hop count.

The actual average network latency increases is much higher,

by approximately 4.3×, as there is more congestion in the
2Simulation methodology used is described in Section VI-A. For these

results, we assume a 4-GPU/16-HMC system using the sliced flattened
butterfly topology but only one of the GPUs is executing the workload.

488488

MEMMEM MEM MEMMEM MEM MEMMEM MEM

CPU Memory Network

GPU GPU GPUCPU …
MEMMEM MEM

GPU … GPU

PCIe SwitchesIO
Hub
IO

Hub

… … …

GPU

GPU Memory Network

CPU

CPU GPU …GPU GPU

…

Unified Memory Network

… … …

(a) (b) (c)

Figure 8. Different multi-GPU system designs based on (a) CPU memory network, (b) GPU memory network, and (c) unified memory network.

network. However, the increased memory parallelism, with

the larger number of memory banks from the additional

remote memory modules, increase memory throughput and

results in approximately 36% decrease in average memory

access time, despite the increase in the network latency.

Further increasing remote memory access ratio to 75% did

not significantly further improve performance since GPU

channels were already saturated.

B. Memory Network Organization

In this section, we describe the different memory network

organization for multi-GPU systems and how they reduce

the communication bottleneck while enabling efficient im-

plementation of SKE. The three different types of memory

network organization are shown in Fig. 8 and they are

classified based on where in the system the memory network

is leveraged.

1) CPU Memory Network (CMN):
In the CPU memory network organization (CMN), the

CPU’s memory is used to create a memory network

(Fig. 8(a)). The memory network is not only used to inter-

connect the CPU with its local memory, but it is also used to

connect to other GPUs as well. Thus, the memory network

replaces the PCIe interconnect that was used for CPU-GPU

communication and reduces the CPU-GPU communication

overhead. However, each GPU is still directly connected to

its own local memory, similar to the baseline. As a result,

accessing a remote GPU’s memory still requires having to

go through the remote GPU first, but the PCIe bottleneck is

removed with the memory network.

2) GPU Memory Network (GMN):
In comparison to CMN, a GPU memory network (GMN)

has all of the GPUs’ local memories interconnected together

(Fig. 8(b)). The CPU-GPU interface remains identical to the

conventional multi-GPU systems but GPUs’ memories are

used to create a memory network. As a result, accessing

a remote GPU’s memory is significantly different from the

baseline or the CPU memory network organization. In either

the baseline or the CMN, remote GPU’s memory access re-

quired sending the request through the remote GPUs. For the

conventional multi-GPU system, the request is sent through

the PCIe channel to the remote GPU and then, access the

remote GPU’s memory as shown in Fig. 9(a). In comparison,

the memory network enables a GPU to access remote GPU’s

memory directly through the memory network (Fig. 9(b)).

Depending on the location of the remote memory, the request

may traverse through one or more intermediate routers (or

HMCs) before arriving at the destination memory module –

however, both the PCIe channel and the remote GPU do not

need to be accessed.

3) Unified Memory Network (UMN):

Both the CPU and the GPU memory network can be

combined to create a single unified memory network (UMN)
(Fig. 8(c)). In this network organization, both the CPU’s

memory and the GPU’s memory are interconnected together

in a single memory network. As a result, any memory

module in the system can be accessed by traversing the

memory network. Both the CMN and the GMN require

explicit transfer of data from the CPU memory to GPU

memory before executing kernels on the CPU. For the GMN

(as well as the baseline), data transfer was done through

the PCIe to the GPU, and then to the GPU’s memory. For

CMN, the PCIe was replaced with a memory network and

thus, higher bandwidth can be provided for data transfer

between the CPU and the GPU but the data still required

being copied to each GPU’s DRAM. However, with a single,

unified memory network between the CPU and the GPU,

data transfer is not necessarily required between the CPU

memory and the GPU memory as the same memory network

(and the memory modules) are shared between the CPU and

the GPUs. One design decision is how to partition CPU

and GPUs data across the different memory modules. One

option is to explicitly partition the memory modules – e.g.,

CPU uses its local memory exclusively while GPU uses its

local memory. However, given the availability of the memory

network and virtual addressing, all of the physical memory

can be shared by both the CPU and GPU and in this work,

we assume this organization for the UMN.

Design Challenges: One of the clear advantages of a
UMN organization is the removal of different types of

interconnects in the system. While the baseline multi-GPU

system requires having DDR memory bus, GDDR memory

bus, and PCIe interface, the UMN only requires a single type

of high-speed channel interface in the system. However, it

does have the additional challenge of both the CPU and

the GPU vendor to support the high-speed link interface for

memory.

489489

MEMMEM MEM

GPU2

MEMMEM MEM MEMMEM MEMMEMMEM MMEMMMMMEM

IO
Hub

CPU

Requester
GPU

MEMMEM MMEMMMMMEM

GPU0

PCIe switch

Target memory location

rter

MEMMEMEMEMEMEM

GPU

M MEM MEM MEM

GPU0

PCIe swswitch

GPU1 GPU3

(a)

GPU0

MEMMEM MEMMEMMMMMEM

IO
Hub

CPU

PCIe switch

Requester
GPU

GPU1 GPU2 GPU3

Target memory location

(b)

Figure 9. Comparison of remote memory access path for (a) conventional
PCIe-based multi-GPU and (b) the GPU memory network (GMN). For
simplicity, a ring topology is shown for the GMN.

V. MEMORY NETWORK ARCHITECTURE TOPOLOGY

In this section, we explore the network topology for mem-

ory network in multi-GPU systems and in particular, focus

on GMN and UMN network organization. We first explore

the communication pattern in the SKE-enabled multi-GPU

system and propose a sliced flattened butterfly topology
that enables higher scalability while still providing high

bandwidth to the GPUs. For the CPU network connectivity,

we propose an overlay network architecture such that latency
is minimized to the CPUs while the high bandwidth of the

HMCs is still provided to the GPUs. In this work, we define

local HMCs as the HMCs that are directly connected to
a given GPU while the remaining HMCs are referred to

as remote HMCs. The collection of local HMCs are also
referred to as a cluster.

A. Network Characteristic

Prior system interconnect design with hybrid memory

cubes (HMCs) [5] for a multi-CPU system is not necessarily

optimal for multi-GPU systems. Since the network topology

design is significantly impacted by the network traffic [46],

we first look at the network traffic with our SKE-enabled

multi-GPU system. We evaluate a 4 GPU-16 HMC system 3

and measured the amount of traffic between GPU-HMC

pairs across different workloads. Fig. 10 shows the fraction

of traffic from the different GPUs (y-axis) to the different
HMC modules (x-axis). The results are shown for two

workloads that have different characteristics.

For some workloads (e.g., KMN), the memory access

across the different HMCs is nearly uniform as shown

3Evaluation methodology used is described in Section VI-A.

0

1

2

3

0

0.01

0.02

0 2 4 6 8 10 12 14

GPU ID

Fraction
of

traffic

HMC ID

0

1

2

3

0

0.02

0.04

0 2 4 6 8 10 12 14

GPU ID

Fraction
of

traffic

HMC ID

(a) (b)

Figure 10. Distributions of traffic in a 4GPU-16HMC system for (a) KMN
and (b) CG.S workloads.

in Fig. 10(a). This access pattern can be expected for

many data-parallel workloads where memory is uniformly

accessed. The uniform random memory access pattern (and

the resulting random network traffic pattern) has significant

impact on the network topology design since the traffic

pattern itself load-balances the network – and thus, adaptive

routing or path diversity in the network is not necessary [46].

However, for other workloads, such as CG.S (Fig. 10(b)),
there is significant variance in traffic between the different

HMCs nodes – e.g., some of the HMCs receive up to 11.7×
more traffic than other HMCs. In this particular workload,

the small input problem size resulted in this imbalance as

there were not sufficient CTAs to be allocated to each GPU. 4

As a result, assuming uniform random traffic across all

workloads is not necessarily valid.

However, by using the lower order bits to interleave across

the local HMCs, the intra-cluster HMC traffic variance is

significantly lower, compared with the inter-cluster HMC

traffic variance. In Fig. 10(b), the intra-cluster traffic is

highlighted in the dotted square box – e.g., GPU0’s traf-

fic to HMC0-3, GPU1’s to HMC4-7, etc. Since we use

fine-grained cache line-granularity interleaving among local

HMC (Section III-C), memory traffic is balanced within a

cluster.

B. Sliced Flattened Butterfly Topology

Kim et al. [5] has explored the design space of the

memory network including the distributor-based dragonfly

(dDFLY) and distributor-based flattened butterfly (dFBFLY).

While dFBFLY provides better performance, dDFLY was

preferred because of dFBFLY’s limited scalability and

higher cost. However, since GPUs require high bandwidth

to the memory, dDFLY does not provide sufficient amount

of bandwidth to remote GPU memory because of the limited

connectivity – e.g., in Fig. 11(a), there is only a single

channel directly connecting any two clusters. As a result, we

consider dFBFLY as the baseline, but we show how it can

be modified to reduce cost while improving scalability by

leveraging the relatively random traffic pattern and reducing

path diversity.

4With optimization efforts such as AMD HSA [34] to minimize GPU of-
floading overhead, GPU-accelerated workloads can benefit from offloading
small computation as well.

490490

zGPU Node (or GPU) Router (or HMC)

zGPU

zGPU

zGPU

zGPU

zGPU zGPU

zGPU

zGPU zGPU

zGPU zGPU zGPU

zGPU

zGPUzGPUzGPUzGPU

zGPU zGPU zGPU

zGPU

zGPU

zGPU

zGPU

Local HMCs

zGPU

zGPU

zGPU

zGPU

(a) (b) (c) (d)

Figure 11. Different multi-GPU system design based on (a) distributor-based dragonfly (dDFLY) [5], (b) conventional flattened butterfly (FBFLY) [47],
(c) distributor-based flattened butterfly (dFBFLY) [5], and (d) proposed sliced flattened butterfly (sFBFLY).

0
50

100
150
200
250
300

2 4 8 16

#
 o

f c
ha

nn
el

s
in

m
em

or
y

ne
tw

or
k

of GPUs

dFBFLY sFBFLY

Figure 12. Comparison of the number of bidirectional channels for
dFBFLY and sFBFLY.

A conventional 2D flattened butterfly topology [47] is

shown in Fig. 11(b). All routers are fully connected within

each row and each column. However, the number of nodes

(or processors) are smaller than the number of the routers (or

HMCs) in a memory network. Thus, distribution can be used
to spread the bandwidth from a single node across multiple

routers to create a distributor-based flattened butterfly (dF-

BFLY) [5] (Fig. 11(c)). Although dFBFLY can provide high

performance, its scalability is limited with small number of

router ports.

In this work, we optimize the dFBFLY and propose

sliced flattened butterfly (sFBFLY). We exploit the traffic
characteristics in multi-GPU systems described earlier; in

particular, the balanced traffic and no need for non-minimal

routing (or path diversity) within a cluster. The main differ-

ence, compared with dFBFLY, is the removal of channels

within a cluster (indicated by the dotted box in Fig. 11(d)),

where a node (or GPU) is distributed across the different

routers (or HMCs). As a result, sFBFLY reduces cost with

a smaller number of channels compared with dFBFLY by not

providing non-minimal paths within a cluster. The minimal

routing of sFBFLY between any GPU and HMC is identical

to that of dFBFLY. If HMC-to-HMC packet existed, the

packet would need to be routed through the GPU but such

traffic does not occur in our system.

An important feature of sFBFLY is that it increases the

scalability of the topology. Fig. 12 compares the number of

channels in a memory network with dFBFLY and sFBFLY.

Since no intra-cluster connectivity is required in sFBFLY

compared to dFBFLY, sFBFLY reduces the number of

channels within the memory network by 50% for a 4-GPU

and 43% for an 8-GPU system. Thus, given the same number

zGPU

zGPU

zGPU

GPU

GPU

GPU

CPU

Off-chip link

On-chip pass-through
path

Figure 13. Memory network architecture of UMN with the CPU overlay
connections.

of channels, sFBFLY can scale to a larger memory network

than dFBFLY. Compared to dDFLY, sFBFLY provides more

inter-cluster bandwidth while reducing the total number of

channels. The intra-cluster channels in the dDFLY topology

are necessary to provide connectivity between any clusters

in the system.

C. Overlay Architecture for UMN

For a unified memory architecture (UMN), in addition

to the GPU nodes, the CPU also needs to be connected

to the same network. Since CPUs are latency-sensitive, it is

important to provide low-latency access in the network. Prior

work on memory network design [5] showed that leveraging

pass-through path across memory network can significantly

reduce the packet latency. By bypassing the SerDes and the

router datapath, an HMC can forward an incoming packet

to a predetermined output port with minimal latency.

Since CPUs are latency-sensitive, we leverage pass-

through path and propose an overlay memory network as
shown in Fig. 13 to provide low-latency access from CPU to

all HMCs. The dark-colored channels indicate the channels

used by the CPU while the GPUs channels are light-colored.

In this design, the CPU and its HMCs are connected to the

memory network similar to GPUs, but serially connected

pass-through paths for the CPU are overlaid on the memory

network. While there can be path diversity in each slice

depending on the topology, CPU packets take the serial

pass-through path to minimize latency at low traffic load.

This routing can increase the average hop count compared

491491

Table I
SYSTEM CONFIGURATION

GPU
Parameter Value
of cores 64 per GPU
of HMCs 4 per GPU

Core
1024 threads, 8 CTAs, 32768 registers,
48 KB shared memory, SIMD width: 32

L1 cache 32 KB/core, 4-way, 128 B line
L2 cache 2 MB/GPU, 16-way, 128 B line
Core, Xbar, L2 clock 1400, 1250, 700 MHz

CPU
Parameter Value

Core
1 Out-of-Order core @ 4 GHz
Issue width: 4, ROB size: 64

L1 I/D cache 64 KB, 4-way, 2-cycle latency
L2 cache 16 MB, 16-way, 10-cycle latency
Cache coherence Directory-based MOESI
Cache line size 64 B

HMC
Parameter Value
HMC organization 8 layers × 16 vaults, 16 banks/vault
HMC memory size 4 GB
Memory scheduler FR-FCFS [48], 16-entry request queue/vault

DRAM timing
tCK=1.25ns, tRP=11, tCCD=4, tRCD=11,
tCL=11, tWR=12, tRAS=22

to a minimal routing with directly channels (e.g., sFBFLY),

but the packet latency can be lower since per-hop latency

can be significantly reduced with pass-through. If there is

significant bandwidth demand from the CPU and result in

the pass-through path from being congested, the CPU packet

can take other paths depending on the routing algorithm.

VI. EVALUATION

A. Methodology

We modified GPGPU-sim [37] to model the multi-GPU

system. The functionality of the SKE runtime system re-

sponsible for CTA assignment was also added. To model the

host thread of CUDA workloads, the CPU was modeled with

McSimA+ [49] while the cache hierarchy leveraged GEMS

simulator [50]. The memory network was modeled with a

cycle-accurate interconnection network simulator [51]. The

parameters are given in Table I. For PCIe bandwidth, we

assumed 15.75 GB/s to model 16-lane PCIe v3.0 channel.

We used the interconnect energy model and parameters

from [5] (2.0 pJ/bit and 1.5 pJ/bit for real and idle packet,

respectively). We assumed each high-speed channel provides

20GB/s bandwidth in each direction, and 8 channels per

CPU, GPU, and HMC. For HMC routers in the logic layer,

we assumed 1.25 GHz, 4-stage pipeline, 3.2ns SerDes la-

tency, 2 message classes with 6 VCs/class, and 512 B buffer-

/VC. We used RW:CLH:BK:CT:VL:LC:CLL:BY memory

address mapping (RW:Row, CLH:Column High, BK:Bank,

CT:Cluster ID, VL:Vault, LC:Local HMC ID, CLL:Column

Low, BY:Byte Offset). We also assumed 4KB page size and

random page placement policy.

Throughout the evaluation, we assumed 4 GPUs and 4

HMCs per GPU (4GPU-16HMC) unless otherwise specified.

Table II
EVALUATED WORKLOADS

Abbr. Input problem size Name
BP 1M points Back Propagation [52]
BFS 1M nodes Breadth First Search [52]

SRAD 2K × 2K grids
Speckle Reducing
Anisotropic Diffusion [52]

KMN 484K objects, 34 features K-means [52]
BH 8K bodies Barnes-Hut [53]
SP 100K clauses, 300K literals Survey propagation [53]
SCAN 16M elements Parallel prefix sum [45]
3DFD 1024×1024×4 grid 3D finite diff. comp. [45]
FWT 8M data Fast Walsh Transform [45]
CG.S Class S (1400 rows) Conjugate Gradient [54]
FT.S Class S (64 × 64 × 64) Fast Fourier Transform [54]
RAY 1024×1024 screen Ray Tracing [37]
STO 26MB file Store GPU [37]
CP 512×256 grid, 100 atoms Coulombic Potential [37]

Table III
EVALUATED MULTI-GPU ARCHITECTURES

Abbreviation Configuration
PCIe PCIe-based multi-GPU with memcpy
PCIe-ZC PCIe-based multi-GPU with zero-copy
CMN CMN-based multi-GPU with memcpy
CMN-ZC CMN-based multi-GPU with zero-copy
GMN GMN-based multi-GPU with memcpy
GMN-ZC GMN-based multi-GPU with zero-copy
UMN UMN-based multi-GPU (no copy)

Since we assumed 8 channels per GPU, each GPU was

connected with two channels to each of its local HMCs

with distribution. We assumed 2D connectivity for 4GPU-

16HMC dFBFLY, and 4×4 2D FBFLY for each slice within
16GPU-64HMC sFBFLY. We used the workloads from

NVIDIA CUDA SDK examples [45], Parboil [55], Ro-

dinia [52], LonestarGPU [53], CUDA-ported NAS parallel

benchmark suite [56], [54], and [37] as described in Table II

without modification.

B. Memory Network Organization

In this section, we compare the alternative multi-GPU

architectures, as summarized in Table III. For each inter-

connect except for UMN, we present performance with

memcpy and zero-copy. With memcpy, the kernel blocks

until data copy is performed between the CPU and GPU,

whereas with zero-copy, data reside in CPU memory and

are directly accessed by GPUs without copying. However,

the interconnect between the CPU and GPUs can become

bottleneck as its bandwidth can be much lower than GPU’s

memory access bandwidth. For the UMN, since the CPU

and the GPU share the same HMCs, we assume no-copy.

Fig. 14 shows the kernel execution and memcpy time

for different workloads. The UMN provides the highest

performance for all workloads since it avoids memcpy

overhead while providing high-bandwidth with memory

network. In comparison, PCIe and PCIe-ZC resulted in the

worst performance due to the PCIe channel bottleneck. The

PCIe channel becomes bottleneck in not only performing

492492

0

0.5

1

1.5

2
PC

Ie
PC

Ie
�Z

C
CM

N
CM

N
�Z

C
GM

N
G

M
N

�Z
C

U
M

N

PC
Ie

PC
Ie

�Z
C

CM
N

CM
N

�Z
C

GM
N

G
M

N
�Z

C
U

M
N

PC
Ie

PC
Ie

�Z
C

CM
N

CM
N

�Z
C

GM
N

G
M

N
�Z

C
U

M
N

PC
Ie

PC
Ie

�Z
C

CM
N

CM
N

�Z
C

GM
N

G
M

N
�Z

C
U

M
N

PC
Ie

PC
Ie

�Z
C

CM
N

CM
N

�Z
C

GM
N

G
M

N
�Z

C
U

M
N

PC
Ie

PC
Ie

�Z
C

CM
N

CM
N

�Z
C

GM
N

G
M

N
�Z

C
U

M
N

PC
Ie

PC
Ie

�Z
C

CM
N

CM
N

�Z
C

GM
N

G
M

N
�Z

C
U

M
N

PC
Ie

PC
Ie

�Z
C

CM
N

CM
N

�Z
C

GM
N

GM
N

�Z
C

U
M

N

PC
Ie

PC
Ie

�Z
C

CM
N

CM
N

�Z
C

GM
N

G
M

N
�Z

C
U

M
N

PC
Ie

PC
Ie

�Z
C

CM
N

CM
N

�Z
C

GM
N

G
M

N
�Z

C
U

M
N

CG.S CP RAY BFS STO SRAD SCAN BP 3DFD GMEAN

N
or

m
al

ize
d�

ru
nt

im
e

Kernel�time Memcpy�time Total�runtime

Figure 14. Breakdown of runtime in different multi-GPU designs based on PCIe, CMN, GMN and UMN.

0
0.2
0.4
0.6
0.8

1
1.2

CG.S KMN CP GMEAN

N
or

m
al

ize
d�

ke
rn

el
�

ru
nt

im
e

dDFLY�MIN dDFLY�UGAL dFBFLY�MIN dFBFLY�UGAL

Figure 15. Performance comparison of minimal (MIN) and load-balanced
(UGAL) routing on distributor-based dragonfly and flattened butterfly
topology.

memcpy but also during kernel execution since we are

assuming SKE and GPUs need to frequently access remote

GPU memory or CPU memory (for zero-copy) which can

aggravate the bottleneck. For example, with BFS, the PCIe-
ZC increased the kernel runtime by 2.75× due to low remote

memory access bandwidth compared with when the data

were copied to GPU memory. For workloads such as 3DFD,
BP, and SCAN, since the memcpy time is longer than kernel
execution time, zero-copy resulted in shorter total runtime

by avoiding memcpy.

There is a similar trend in the CMN and GMN as well,

although the actual amount of benefit differs. The benefit of

CMN over PCIe is the higher bandwidth between GPUs and

the host, which lowers memcpy latency and also improves

zero-copy performance. As a result, the CMN and CMN-

ZC reduced total runtime over PCIe by 1.8× and 2.2×,
respectively. The GMN also provides higher bandwidth

among GPUs, which makes SKE more efficient, reducing

kernel execution time by up to 8.8× for BP and 3.5×
on average compared to PCIe. However, the single PCIe

channel bottleneck still exists between the CPU and GPUs.

As a result, the GMN-ZC provided the same performance

as PCIe-ZC since the GPU memory was never accessed

and the memory network did not make any difference.

Overall, the GMN reduced the total runtime by 30% and

33% compared to PCIe. UMN further reduced the overall

runtime by 8.5× by eliminating memcpy and providing high

SKE performance compared to PCIe.

1) Impact of Adaptive Routing: We describe the perfor-
mance benefit of intra-cluster adaptive routing in Fig. 15. We

only show representative workloads since others showed a

very similar pattern. Because of the relatively random access,

many workloads including KMN and CP result in minimal
improvement with adaptive routing – approximately only 1-

2% performance improvement over the same topology with

only minimal routing. For CG.S, there is 9.5% performance

improvement by leveraging adaptive routing in dFBFLY as

the workload showed traffic variance across the different

HMCs.

2) Topology Evaluation: Fig. 16 compares the perfor-
mance of different sliced memory network topologies, in-

cluding sliced mesh (sMESH) and sliced torus (sTORUS).

Similar to the sliced FBFLY, the local HMC cluster in these

topologies are directly connected to the GPUs without any

additional connectivity between the local HMC nodes. Since

sMESH and sTORUS use a smaller number of channels

per HMC compared to sFBFLY, in order to provide a fair

comparison, we also evaluated sMESH-2x and sTORUS-2x

where the number of channels within each slice was doubled

to provide more bandwidth. For most of the workloads,

sFBFLY provided a better or comparable performance to

sMESH-2x and sTORUS-2x, which outperformed sMESH

and sTORUS by providing a higher network bandwidth.

Compared to sTORUS-2x, sFBFLY provides the same bisec-

tion bandwidth, but sFBFLY performed better due to lower

average hop count.

Fig. 17 compares the energy consumption of different

memory network topologies during kernel execution. Com-

pared to sMESH and sTORUS, sMESH-2x and sTORUS-2x

consumes more power due to additional channels but, by

reducing overall kernel runtime, lowered energy by 6.8%

and 4.8%, respectively. The sFBFLY further reduced the

network energy by reducing runtime. Compared to sMESH,

sFBFLY reduced network energy by up to 50.7% for BP
and 20.3% on average. Thus, sFBFLY resulted in the highest

performance while minimizing energy consumption.

Fig. 18 shows the performance of overlay network com-

pared to sMESH and sFBFLY that do not use pass-through.

We used 1CPU-3GPU-16HMC in this evaluation and we

evaluated the only two workloads (CG.S and FT.S) that
uses CPU for computation. For the other workloads, CPU

does minimal computation and the use of the overlay net-

work has minimal impact on performance. The performance

gap between sMESH and the overlay is made by pass-

through path that reduces per-hop latency. The overlay

performed better than sFBFLY by significantly reducing

per-hop latency even though the hop count was higher as

discussed in Section V-C.

493493

0

0.5

1

1.5

3DFD BP BFS BH CG.S CP FT.S FWT KMN RAY SCAN SP SRAD STO GMEAN

N
or

m
al

ize
d�

ke
rn

el
�ru

nt
im

e sMESH sMESH�2x sTORUS sTORUS�2x sFBFLY

Figure 16. Performance comparison of different sliced network designs based on mesh, torus, and flattened butterfly.

0

0.5

1

1.5

3DFD BP BFS BH CG.S CP FT.S FWT KMN RAY SCAN SP SRAD STO GMEAN

N
or

m
al

ize
d�

ne
tw

or
k�

en
er

gy

sMESH sMESH�2x sTORUS sTORUS�2x sFBFLY

Figure 17. Energy comparison of different sliced network designs based on mesh, torus, and flattened butterfly.

0.7

0.8

0.9

1

CG.S FT.S GMEAN

N
or

m
al

ize
d�

ru
nt

im
e

sMESH sFBFLY Passthru�overlay

Figure 18. Host thread (CPU) performance with different UMN designs.

0

4

8

12

16

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

CP FWT GMEAN

Sp
ee

du
p

Figure 19. Speedup of kernel execution as the number of GPUs is increased
on the horizontal axis.

3) Scalability: For scalability study, we increased the
input problem size but because of the infeasible simulation

time for some of the workloads, we only evaluated 3DFD,
BP, CP, FWT, RAY, SCAN, and SRAD. Fig. 19 shows the
speedup for kernel execution as the number of GPUs is

increased. We show the two workloads with the highest and

the lowest scalability. On average, the evaluated workloads

showed high scalability as the geometric mean of speedup

was 13.5 for 16 GPUs. CP resulted in a near-ideal perfor-
mance scaling as it is compute intensive and the increased

memory network latency had little impact on performance.

With 8 GPUs, the performance was 35% better than the ideal

speedup due to the side effect of increased L2 cache hit rate

as the number of CTAs scheduled to each core was reduced.

The FWT showed the lowest speedup (11.2×) with 16 GPUs
as the input problem size was not large enough to keep the

cores busy.

VII. CONCLUSION

We explored how different memory network organizations

can be used in multi-GPU systems to provide high mem-

ory bandwidth and improve programmability. We proposed

scalable kernel execution that enables a single kernel to be
executed across multiple GPUs without modifying source

code or manually partitioning data across the different

GPU devices. To overcome the communication bottleneck

between the host CPU and the GPU as well as the high cost

of accessing remote GPU memory, we proposed alternative

memory network organization in multi-GPU systems includ-

ing the unified memory network. We also proposed the sliced
flattened butterfly topology for the memory network that

exploited the communication pattern in multi-GPU systems

and the overlay network to provide low latency for CPU in
the UMN.

ACKNOWLEDGMENT

This work was supported in part by SK Hynix, the MSIP

under the Mid-career Researcher Program through NRF

(NRF-2013R1A2A2A01069132), and the ITRC support pro-

gram supervised by the NIPA (NIPA-2014-H0301-14-1018).

REFERENCES

[1] J. Owens et al., “GPU computing,” Proceedings of the IEEE,
vol. 96, no. 5, pp. 879–899, 2008.

[2] “Nvidia to Stack up DRAM on Future Volta GPUs,”
http://www.theregister.co.uk/2013/03/19.

[3] “Hybrid Memory Cube Specification 1.0,” Hybrid Memory
Cube Consortium, 2013. [Online]. Available: http://www.
hybridmemorycube.org/

[4] J. T. Pawlowski, “Hybrid Memory Cube (HMC),” Hot Chips
23, 2011.

[5] G. Kim et al., “Memory-centric System Interconnect Design
with Hybrid Memory Cubes,” in Proceedings of PACT’13.

[6] D. R. Resnick, “Memory Network Methods, Appara-
tus, and Systems,” US Patent Application Publication
US20100211721 A1, 2010.

[7] T. C. Schroeder, “Peer-to-Peer and Unified Virtual Address-
ing,” GPU Technology Conference, NVIDIA, 2011.

[8] M. Harris, “Unified Memory in CUDA 6,” GTC On-Demand,
NVIDIA, 2013.

494494

[9] D. Foley, “NVLink, Pascal and Stacked Mem-
ory: Feeding the Appetite for Big Data,”
http://devblogs.nvidia.com/parallelforall/nvlink-pascal-
stacked-memory-feeding-appetite-big-data.

[10] “HP ProLiant SL270s Gen8 Server Quickspecs,” HP.

[11] “Dell PowerEdge C410x Rack Server Technical Guide,”
DELL.

[12] J. Kim et al., “Microarchitecture of a high-radix router,” in
Proceedings of ISCA’05.

[13] D. Schaa and D. Kaeli, “Exploring the multiple-GPU design
space,” in Processing of IPDPS’09.

[14] P. Micikevicius, “Multi-GPU Programming,” GPU Comput-
ing Webinars, NVIDIA, 2011.

[15] D. Ziakas et al., “Intel QuickPath Interconnect Architec-
tural Features Supporting Scalable System Architectures,” in
HOTI’10.

[16] “HyperTransport I/O Technology Overview,” The Hyper-
Transport Consortium, Tech. Rep., June 2004.

[17] P. Rosenfeld, “Performance Exploration Of the Hybrid Mem-
ory Cube,” Ph.D. dissertation, the University of Maryland,
2014.

[18] K. Sudan, “Data Placement for Efficient Main Memory Ac-
cess,” Ph.D. dissertation, the University of Utah, 2013.

[19] “SLI Best Practices,” White Paper, NVIDIA, 2007.

[20] “ATI CrossFire Pro User Guide,” White Paper, AMD, 2009.

[21] E. Ayguadé et al., “An Extension of the StarSs Programming
Model for Platforms with Multiple GPUs,” in Proceedings of
Euro-Par’09.

[22] “CUBLAS Library User Guide,” NVIDIA, 2012.

[23] S. Tomov et al., “Dense linear algebra solvers for multicore
with gpu accelerators,” in Proceedings of IPDPSW’10.

[24] J. Malcolm et al., “ArrayFire: a GPU acceleration platform,”
in Proc. of SPIE Vol, vol. 8403, 2012, pp. 84 030A–1.

[25] “NVIDIA Multi-GPU Technology,” NVIDIA. [Online]. Avail-
able: http://www.nvidia.com/object/multi-gpu-technology.
html

[26] J. Kim et al., “Achieving a single compute device image in
OpenCL for multiple GPUs,” in Proceedings of PPoPP’11.

[27] J. Lee et al., “Transparent CPU-GPU collaboration for data-
parallel kernels on heterogeneous systems,” in Proceedings of
PACT’13.

[28] T. Diop et al., “DistCL: A framework for the distributed ex-
ecution of opencl kernels,” in Proceedings of MASCOTS’13.

[29] M. Strengert et al., “CUDASA: Compute Unified Device and
Systems Architecture,” in Proceedings of EG PGV’08.

[30] C. de La Lama et al., “Static Multi-device Load Balancing
for OpenCL,” in Proceedings of ISPA’12.

[31] U. Dastgeer et al., “Auto-tuning SkePU: a multi-backend
skeleton programming framework for multi-GPU systems,”
in Proceedings of IWMSE’11.

[32] J. Kim et al., “SnuCL: an OpenCL framework for heteroge-
neous CPU/GPU clusters,” in Proceedings of ICS’12.

[33] R. Aoki et al., “Hybrid opencl: Enhancing opencl for dis-
tributed processing,” in Proceedings of ISPA’11.

[34] G. Kyriazis, “Heterogeneous system architecture: A technical
review,” AMD, 2012.

[35] “NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi,” White Paper, NVIDIA, 2009.

[36] S. Jones, “Introduction to Dynamic Parallelism,” GPU Tech-
nology Conference, NVIDIA, 2012.

[37] A. Bakhoda et al., “Analyzing CUDA workloads using a
detailed GPU simulator,” in Proceedings of ISPASS’09.

[38] S. H. Duncan et al., “Method and apparatus for providing
peer-to-peer data transfer within a computing environment,”
US Patent Publication US7451259 B2, 2008.

[39] C. S. Case et al., “Multi-client virtual address translation
system with translation units of variable-range size,” US
Patent Publication US7334108 B1, 2008.

[40] E. Cooper-Balis et al., “Buffer-on-board memory systems,”
in Proceedings of ISCA’12.

[41] D. B. Glasco et al., “Cache-based control of atomic operations
in conjunction with an external ALU block,” U.S. Patent
8135926, 2012.

[42] I. Singh et al., “Cache coherence for GPU architectures,” in
Proceedings of HPCA’13.

[43] P. Micikevicius, “GPU Performance Analysis and Optimiza-
tion,” GPU Technology Conference, 2012.

[44] D. B. Kirk and W.-m. W. Hwu, Programming Massively
Parallel Processors: A Hands-on Approach, 1st ed. Morgan
Kaufmann Publishers Inc., 2010.

[45] “CUDA C/C++ SDK code samples,” NVIDIA, 2011.

[46] W. J. Dally and B. Towles, Principles and Practices of
Interconnection Networks. Morgan Kaufmann, 2004.

[47] J. Kim et al., “Flattened Butterfly: a cost-efficient topology
for high-radix networks,” in Proceedings of ISCA’07.

[48] S. Rixner et al., “Memory Access Scheduling,” in Proceed-
ings of ISCA ’00.

[49] J. Ahn et al., “McSimA+: A Manycore Simulator with
Application-level+Simulation and Detailed Microarchitecture
Modeling,” in Proceedings of ISPASS ’13.

[50] M. M. K. Martin et al., “Multifacet’s general execution-
driven multiprocessor simulator (GEMS) toolset,” SIGARCH
Computer Architecture News, vol. 33, no. 4, pp. 92–99, 2005.

[51] N. Jiang et al., “A detailed and flexible cycle-accurate
network-on-chip simulator,” in Proceedings of ISPASS’13.

[52] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in Proceedings of IISWC’09.

[53] M. Burtscher et al., “A Quantitative Study of Irregular Pro-
grams on GPUs,” in Proceedings of IISWC’12.

[54] “High Performance Computing with GPUs,” http://hpcgpu.
codeplex.com/.

[55] J. Stratton et al., “Parboil: A Revised Benchmark Suite for
Scientific and Commercial Throughput Computing,” Center
for Reliable and High-Performance Computing, 2012.

[56] D. H. Bailey et al., “The NAS parallel benchmarks,” Interna-
tional Journal of High Performance Computing Applications,
vol. 5, no. 3, pp. 63–73, 1991.

495495

