
Improving GPGPU Resource Utilization Through
Alternative Thread Block Scheduling

Minseok Lee, Seokwoo Song,

Joosik Moon, John Kim

KAIST
Daejeon, Korea

{lms135, sukwoo24, jsmoon78, jjk12}@kaist.ac.kr

Woong Seo, Yeongon Cho,

Soojung Ryu

Samsung Electronics
Giheung, Korea

{brand.seo, yeongon.cho, soojung.ryu}@samsung.com

Abstract
High performance in GPGPU workloads is obtained by

maximizing parallelism and fully utilizing the available re-
sources. The thousands of threads are assigned to each core
in units of CTA (Cooperative Thread Arrays) or thread blocks
– with each thread block consisting of multiple warps or wave-
fronts. The scheduling of the threads can have significant
impact on overall performance. In this work, explore alter-
native thread block or CTA scheduling; in particular, we
exploit the interaction between the thread block scheduler
and the warp scheduler to improve performance. We explore
two aspects of thread block scheduling – 1) LCS (lazy CTA
scheduling) which restricts the maximum number of thread
blocks allocated to each core, and 2) BCS (block CTA schedul-
ing) where consecutive thread blocks are assigned to the same
core. For LCS, we leverage a greedy warp scheduler to help
determine the optimal number of thread blocks by only mea-
suring the number of instructions issued while for BCS, we
propose an alternative warp scheduler that is aware of the

“block” of CTAs allocated to a core. With LCS and the ob-
servation that maximum number of CTAs does not necessary
maximize performance, we also propose mixed concurrent
kernel execution that enables multiple kernels to be allocated
to the same core to maximize resource utilization and improve
overall performance.

1. Introduction
GPGPUs are becoming widely used for different workloads

because of its significant computing capability [21]. These

architectures allow for thousands of threads to be executed

in parallel to exploit large amount of computation capabil-

ity. With programming models such as CUDA [24, 10] or

OpenCL [19], GPGPUs are often programmed through a hi-

erarchy of threads. A collection of threads are grouped to

form a warp or a wavefront and the warps are combined to

create a CTA (cooperative thread array) or a thread block. 1

All threads within a CTA are executed on the same core and

the threads in a warp are often executed together. As a result,

there are two level of schedulers within a GPGPU – a warp

(or a wavefront) scheduler to determine which warp is exe-

cuted and a thread block or CTA scheduler to assign CTAs to

1In this work, we use the term thread block and CTA interchangeably.

0
0.2
0.4
0.6
0.8

1
1.2

1 2 3 4 5 6 7 8

No
rm

al
ize

d
Pe

rf.
of CTAs

BLK MADD BFS
KMN EIP MUM

Figure 1: Performance of different workloads as the maxi-
mum number of CTAs allocated to each core is var-
ied on the NVIDIA Tesla M2050 hardware.

cores. To increase performance, there has been some recent

work on different warp schedulers [20, 29, 15]. They improve

resource utilization and/or improve hiding the impact of long

memory latency operations. However, to the best our knowl-

edge, very few work have investigated the impact of CTA

or thread block scheduling on overall performance. In this

work, we explore the impact of thread block scheduling on

overall performance as well as the interaction between the

thread block and warp scheduling.

To evaluate the impact of alternative CTA scheduling in

real hardware, we vary the number of CTAs on a NVIDIA

Tesla M2050 GPU and plot the performance for different

workloads in Figure 1. By default, the current CTA sched-

uler in hardware assigns the maximum number of CTAs to

each core. The maximum number of CTAs depends on the

resources used by each thread and the upper limit is deter-

mined the architecture (e.g., 8 CTAs in the Tesla architecture

that we evaluate). In order to approximate varying the num-

ber of CTAs on current hardware, we increase the usage of

shared memory by modifying the source code. The work-

loads shown in Figure 1 do not use shared memory thus we

add a simple write command to shared memory. For some of

the workloads (e.g., MADD, BLK), the results are intuitive

as performance mostly increases as the number of CTAs as-

signed to each core increases. However, for some workloads

(e.g., EIP, KMN, BFS), the performance actually degrades
as the number of CTAs assigned to a core continues to in-

crease. For such workloads, assigning the maximum number

of CTAs does not necessarily result in maximum performance

as additional CTAs degrade performance by likely creating

978-1-4799-3097-5/14/$31.00 ©2014 IEEE978-1-4799-3097-5/14/$31.00 ©2014 IEEE

resource contention.

Prior work [29, 16] have also made similar observations

that maximizing the number of threads executed concur-

rently does not necessarily maximize performance. Cache

Conscious Wavefront Scheduling (CCWS) [29] proposes

a warp scheduler that tracks L1 cache accesses to throttle

the number of warps scheduled. Dynamic CTA scheduling

(DYNCTA) [16] attempts to allocate the optimal number of

CTAs to each core based on the application characteristics.

However, these approaches require detailed monitoring of

the workload behaviors for the entire kernel execution and

based on some empirical thresholds, the number of warps (or

CTAs) scheduled is adjusted. In addition, the value of the

thresholds has a significant impact on overall performance

and the same set of thresholds is not likely to be optimal

across all workloads.

In this work, we leverage the observation that the execution

of threads on accelerators such as GPGPUs is impacted by

both the warp scheduler and the thread block scheduler. As

a result, we propose a holistic approach of considering both

schedulers to improve the efficiency in GPGPU architecture.

For workloads where the maximum number of CTAs does

not maximize performance, we leverage a greedy warp sched-

uler [29] to propose a lazy CTA scheduling (LCS) where the

maximum number of CTAs allocated to each core is reduced

to avoid resource contention and performance degradation. In

addition, to exploit inter-CTA locality, we propose block CTA

scheduling (in conjunction with an appropriate block-aware

warp scheduling) to improve performance and efficiency. Our

approach of alternative thread blocking also provides addi-

tional opportunity to improve efficiency (and performance)

when the maximum number of threads are not assigned to

each core. We propose mixed concurrent kernel execution

(mCKE) where multiple kernels are scheduled on the same

core to improve resource utilization and improve overall per-

formance.

In particular, the contributions of this work include the

following.

• We characterize different workload behavior as the number

of thread blocks (or CTAs) is varied and analyze the impact

on overall performance.

• We exploit the interaction between the warp scheduler

and the thread block scheduler to improve the overall ef-

ficiency of the GPGPU system. By leveraging a greedy

warp scheduler [29] and characteristics of a thread block,

we propose Lazy CTA Scheduling (LCS) to reduce the

number of thread blocks allocated to each cores and avoid

performance degradation.

• To exploit the inter-CTA cache locality, we propose block

CTA scheduling (BCS) where consecutive CTAs are as-

signed to the same cores. To fully exploit such benefits, we

propose a CTA-aware greedy warp scheduler that is aware

of consecutive CTA allocation to maximize performance.

• With non-maximal number of thread blocks scheduled for

CTA Scheduler

CORECORE ... CORE CORE

Interconnection Network

L2$
MC

L2$
MC

L2$
MC

...

Figure 2: High-level block diagram of a GPGPU.

each core, we propose mixed concurrent kernel execution

(mCKE) to improve resource utilization.

The rest of the paper is organized as follows. In Section 2,

we describe our baseline GPGPU architecture, evaluation

methodology, and thread block scheduling in modern GPUs.

We then characterize the different workloads and the impact

of varying the number of CTAs on overall performance in Sec-

tion 3. Alternative CTA scheduling is presented in Section 4,

which includes the lazy CTA scheduling (LCS) and block

CTA scheduling (BCS). The simulation results of the alter-

native CTA scheduling are presented in Section 5. Section 6

presents related work and we conclude in Section 7.

2. Background
In this section, we first describe the experimental method-

ology used in this work and then, provide background in-

formation on thread block (or CTA) scheduling in modern

GPGPUs.

2.1. Methodology

The GPGPU that we model consists of 28 cores (or

streaming multiprocessors(SMs)) connected to 8 memory

controllers, as shown in Figure 2. Each core has its own

private L1 data cache, texture cache, and shared memory

while each memory partition has a slice of the L2 cache and

a memory controller that is shared among the SMs. The

cores and the memory partitions are interconnected through

an on-chip network. We use a detailed GPGPU simulator

(GPGPU-sim v3) [4] in our evaluation and our configuration

parameters are described in Table 1. The simulator was mod-

ified to implement the different warp and CTA scheduling

that we evaluate in this work. We considered a wide range

of GPGPU CUDA workloads, including applications from

Rodinia [6], Parboil [30], NVIDIA SDK [22], and workloads

from GPGPU-sim [4], as summarized in Table 2. To estimate

power, we use the GPUWattch [18] which is integrated with

GPGPU-sim and assume 45nm technology.

2.2. GPU CTA Scheduling

On NVIDIA GPUs [23, 25], a GigaThread Engine is the

hardware engine on both Fermi and Kepler GPUs which is

responsible for CTA scheduling – i.e., distributing the CTAs

Parameters Value
Compute Units 28

Warp Size 32

Resources / Core max 1536 Threads, 32768 Registers

Core / ICNT / Memory Clock 1400 MHz / 1400 MHz / 924 MHz

Shared Memory 48KB

Constant Cache 8KB

Texture Cache 32KB, 16-way, 64B line

L1 Data Cache 32KB, 8-way,
LRU, 128B line

L2 Cache 128KB/Memory Channel, 8-way,
LRU, 256B line

Interconnect crossbar, 32B channel width

DRAM Model FR-FCFS, 8MCs, 16 DRAM banks/MC

GDDR5 Timing tCL=12, tRP=12, tRC=40
tRAS=28, tRCD=12, tRRD=6

Table 1: Baseline Configuration
to the SM (stream multiprocessors) 2. However, there is

very little public information available on the details of CTA

scheduling. In this work, we assume a baseline round-robin

(RR) CTA scheduling [1] where the CTAs are assigned to

each SM in a round-robin manner and assign the maximum

number of CTAs to each core. The maximum number of

CTAs assigned to each core depends on the resource usage of

the workload, including the amount of registers, shared mem-

ory, etc. Once a particular CTA finishes, the CTA scheduler

assigns another CTA to that particular SM, until all CTAs

have been assigned to the cores.

We analyzed the behavior of the CTA scheduler through

instrumentation. In the source code of the workloads, we

used the PTX register %smid to determine which SM each

CTA was assigned to. An example output of a CTA assign-

ment to the different SMs is shown in Figure 3 for the VADD

workload on the Tesla M2050 hardware, which had 14 SMs.

We evaluated other workloads and synthetic workloads and

they also showed similar trend. Although the CTAs are not

exactly assigned in a round-robin manner, it is approximately

round-robin as the the CTA assignment rotates between the

different nodes. The SMs are organized hierarchically in the

Tesla GPU (e.g., two SMs share a single TPC) and the sched-

uler might take the hierarchy into account when scheduling

and not assign the CTAs using an exact round-robin schedul-

ing. In the rest of this work, round-robin CTA scheduling is

used as the baseline and present alternative CTA or thread

block scheduling.

3. Workload Characteristics
We first repeat the results shown earlier in Figure 1 with

a simulator and vary the number of CTAs assigned to each

core as shown in Figure 4. With a simulator, there is no

need to change the source code to modify the maximum

number of CTAs assigned to each core. In the architecture

that we simulated, the maximum number of CTAs that can be

assigned to each core is 8, similar to the Fermi architecture,

but depending on the workload, the maximum number of

CTAs can be smaller than 8. The results in Figure 4 are

categorized into four categories, based on their performance

2In this work, we use the term “core” and SM (stream multiprocessor)

interchangeably.

Different SMs

Al
lo

ca
te

d
C

TA
 ID

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35
39 40 41 42 43 44 45 46 36 37 38 47 48 49

50 51 52 53 54 55
56 57 58 59 60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79 80 81 82 83

Figure 3: CTA assignment across the different SMs on Tesla
M2050 for VADD workload. The maximum number
of CTAs per SM is 6 for VADD.

Name Abbr. # of # of CTA Type
kernels CTAs Dim.

Separable Convolution CONV 34 18432 16×8 I
Filter[22]

Matrix Multiplication[22] MMUL 1 864 16×16 I

Back Propagation[6] BP 2 65536 16×16 II

Breadth First Search[6] BFS 24 1954 512 II

Coulombic Potential[30] CP 1 1024 16×8 II

Ray Tracing[4] RAY 1 8192 16×8 II

Structured Grid[6] SRAD 1 16384 16×16 II

Matrix Addition[5] MADD 1 1024 16×16 II

Transpose[22] TRAN 8 4096 16×16 II

Vector Addition[22] VADD 1 8182 256 II

3D Finite-Difference FDTD 1 576 16×16 II
Time-Domain[22]

Kmeans[6] KMN 1 1936 256 III

MUMmerGPU[4] MUM 1 196 256 III

EstimatePInlineP[22] EIP 2 391 256 III

3D finite difference[22] 3DFD 1 900 16×16 IV

Black-Schole[22] BLK 1 8192 128 IV
option pricing

Seven point stencil[30] STN 1 1024 32×4 IV

Lattrice-Boltzmann LBM 1 13000 100 IV
Method[30]

3D Laplace Solver[4] LPS 1 2048 16×8 IV

Table 2: GPGPU Workload Description

behaviour as the number of CTAs assigned to each core is

increased.

• Type I : Increased Performance – As the number of CTAs

assigned to each core increases, the overall performance

continues to increase. As more CTAs are available to each

core, the workloads can explore the additional parallelism

available by more efficiently utilizing the resources and/or

effectively hiding the high memory latency.

• Type II : Increased Performance and Saturate – Similar to

Type I, the performance initially increases but after some

number of CTAs are assigned to each core, the perfor-

mance saturates and there is no benefit of further assigning

additional CTAs.

• Type III : Decreased Performance – Assigning minimal

number of CTAs to each core results in the best perfor-

mance as additional CTAs reduce performance.

• Type IV : Increase then Decrease: Similar to Type I and

II, there is an increase in performance initially but after an

optimal point, the performance decreases – similar to Type

III.

In order to understand why the performance differs for the

different workloads, we analyze the core activity into AC-

0
0.2
0.4
0.6
0.8

1
1.2

No
rm

al
ize

d
Pe

rf.

of CTAs

CONV MMUL
0

0.2
0.4
0.6
0.8

1
1.2

1 2 3 4 5 6 7 8

No
rm

al
ize

d
Pe

rf.

of CTAs

VADD SRAD CP

(a) Type-I (b) Type-II

0
0.2
0.4
0.6
0.8

1
1.2

1 2 3 4 5 6

No
rm

al
ize

d
Pe

rf.

of CTAs

MUM KMN EIP
0

0.2
0.4
0.6
0.8

1
1.2

1 2 3 4 5 6 7 8

No
rm

al
ize

d
Pe

rf.

of CTAs

BLK LPS STN

(c) Type-III (d) Type-IV

Figure 4: Performance as the number of CTAs assigned to
each core increases for different workloads.

TIVE or INACTIVE. ACTIVE refers to core cycles when

a warp has been issued and INACTIVE refers to when no

warps are issued. INACTIVE can be partitioned into the

following three categories:

• IDLE: There are no available warps that can be issued in

the cycle (e.g., all warps do not have a valid instruction).

This can occur when there are not sufficient warps (and

CTAs) assigned to the core.

• MEM_STALL: Most of the warps in the core are stalled

waiting for data reply from memory while other warps

have no valid instruction to issue.

• CORE_STALL: The core pipeline is stalled and no warp

can be issued. While some of the warps in the core might

be stalled waiting for data from memory, other warps are

stalled because of core/pipeline resource contention (e.g.,

lack of MSHR entries).

Figure 5 shows the core activity breakdown for several repre-

sentative workloads from the different workload categories.

As the number of CTAs assigned to each core increases, both

the IDLE cycles and the MEM_STALL cycles decrease sig-

nificantly for Type-I workloads (Figure 5(a)). The increase in

the number of threads from larger number of CTAs helps to

hide the memory latency while increasing the core utilization

— and results in continuous improvement in performance.

In comparison, for Type-II workloads such as SRAD (Fig-

ure 5(b)), both MEM_STALL and IDLE cycles decrease

initially as the number of CTAs increase. However, as the

number of CTAs continue to increase, the MEM_STALL cy-

cles continue to decrease, similar to Type-I but the fraction

of CORE_STALL cycles begin to increase. The additional

threads do not necessarily help in improving performance

and performance saturates.

In comparison, Figure 5(c,d) show examples where in-

creasing the number of CTAs actually decrease the over-

all performance. For these workloads, there are significant

idleactive

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

No
rm

al
ize

d
#

 o
f c

yc
le

s

of CTAs

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6

No
rm

al
ize

d
#

 o
f c

yc
le

s

of CTAs

(a) Type-I (b) Type-II

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

No
rm

al
ize

d
#

 o
f c

yc
le

s

of CTAs

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 3 4 5 6 7 8

No
rm

al
ize

d
#

 o
f c

yc
le

s

of CTAs

(c) Type-III (d) Type-IV

Figure 5: Core activity analysis for different representative
workloads. (a) Type I - CONV (b)Type II - SRAD (c)
Type III - KMN (d) Type IV - LPS

0
0.2
0.4
0.6
0.8

1
1.2

1 2 3 4 5 6
of CTAs

L1 miss L2 miss Normalized IPC

0
0.2
0.4
0.6
0.8

1
1.2

1 2 3 4 5 6 7 8
of CTAs

L1 miss L2 miss Normalized IPC

(a) (b)

Figure 6: Performance and cache miss rate when varying
CTAs in (a) KMN (Type-III) and (b) BLK (Type-IV).

CORE_STALL cycles as the additional threads result in more

contention for some of the resources. The reasons for higher

CORE_STALL depends on the workload itself. For some L1

cache sensitive workloads (e.g., EPI, KMN and LBM), the

additional contention in the L1 data cache from the larger

number of CTAs degrades overall performance (Figure 6(a)).

For other workloads (e.g., LPS, BLK), performance initially

increases but then, performance starts to degrade because of

increased L2 cache miss rate (Figure 6(b)). For MUM, the

texture cache contention increases with more CTAs, which

results in higher average memory access latency and degrades

overall performance.

In the following section, we propose alternative thread

block scheduling that has negligible impact on Type-I work-

loads while improving the performance or efficiency for the

other type of workloads. In particular, for Type-III and Type-

IV workloads, we propose thread block scheduling to reduce

the number of thread blocks allocated to each core to maxi-

mize performance (Section 4). In addition, without the maxi-

mum number of threads allocated to each core, we explore

opportunities to improve efficiency through power-gating and

mixed concurrent kernel execution (Section 4.4).

MC Computation Memory operation Memory latency

C M

M

M
M

C

C
C

C

C

C
C

C

C
C

CTA 0

CTA 1

CTA 2
CTA 3

C CTA 0
finishes

time(a)

MCCTA 0

CTA 1

CTA 2
CTA 3

C

MC C

MC C
MC C

C
CTA 0

finishes
C

C
C

time(b)

MCTA 0

CTA 1

CTA 2
CTA 3

M

M

M

time(c)

C

C

C

M

M

M

C

C

C

M

M

C

M
C

C

M

C
Evict Evict

CTA 0

CTA 1

CTA 2
CTA 3

time(d)

CM

M

M

M C CM M C
CTA 0

finishes
C M C M

C M

C M C

C M
Evict

Figure 7: Example of different thread block with (a,c) round-robin warp scheduler and (b,d) greedy warp scheduler.

4. Alternative Thread Block Scheduling
In this section, we describe two alternative thread block

scheduling for GPGPUs to improve the efficiency. In par-

ticular, we focus on a holistic approach by investigating the

interaction between the warp scheduler and thread block (or

CTA) scheduler. By leveraging a greedy warp scheduler, we

propose a Lazy CTA scheduling (LCS) that reduces the maxi-

mum number of CTAs that can be assigned to each core to

improve performance and energy efficiency. We then present

Block CTA scheduling (BCS) where sequential CTA blocks

are assigned to the same core to improve inter-CTA cache

locality and an appropriate warp scheduler that exploits such

locality.

4.1. Lazy CTA Scheduling (LCS)
The goal of Lazy CTA Scheduling (LCS) is to reduce

the number of thread blocks allocated to each core dynam-

ically and maximize performance (and minimize resource

contention) without requiring any static analysis of the code.

Prior work (DYNCTA [16]) also reduced the number of

thread blocks assigned to the cores but requires dynamic

analysis of the workload characteristics, including the num-

ber of idle cycles, number of cycles warps are waiting for

memory data, etc. In addition, empirically determined thresh-

olds are necessary to determine whether to reduce or increase

the number of thread blocks allocated. In comparison, LCS

only requires a single measurement during the execution of

the first thread block and based on the data collected, the

number of thread blocks allocated to the core is adjusted.

The LCS is based on the following two observations.

• Since work distribution across the different cores are done

at the granularity of thread blocks, we use a single thread

block (or CTA) to monitor the characteristics of a particular

kernel in a workload.

• To help identify the number of sufficient threads, we lever-

age the interaction between the warp scheduler and thread

block scheduler – in particular, exploit greedy warp sched-

uler to help guide the thread block scheduler.

We leverage a greedy-warp scheduler (greedy-then-oldest

(GTO) [29]) to properly adjust the number of thread blocks

per core instead of a round-robin warp scheduler. An example

that illustrates the difference between a greedy warp sched-

uler and round-robin warp scheduler is shown in Figure 7.

We assume workload where 4 CTAs or thread blocks is the

maximum number of thread blocks allocated to each core.

With a round-robin warp scheduler, each thread block will

likely have issued a similar number of instructions when the

first thread block finishes, as shown in Figure 7(a). However,

in comparison, a greedy scheduler (e.g., GTO) prioritizes a

single warp until it stalls, and then selects the oldest warp.

As a results, GTO ends up prioritizing a single thread block

until all warps in the given thread block are stalled – and

then, selects a warp from the oldest thread block. When the

first thread block finishes (Figure 7(b)), the number of in-

structions executed for each thread block will differ with a

greedy warp scheduler – for example, while CTA0 completed

and CTA1 and CTA2 issued most of its instructions (3 out of

the 4 instructions), CTA3 was not able to issue any instruc-

tion. As a result, although 4 CTAs is the maximum number

of CTAs, three CTAs are sufficient for this workload as the

fourth CTA does not provide any further benefit – suggesting

that the maximum number of threads blocks can be reduced.

This can illustrate the behavior of Type-II workload where

performance saturates with additional thread blocks.

Similarly, Figure 7(c)) shows an example of Type-III or

Type-IV workloads where performance can degrade. In this

example, we assume a memory access, followed by a long

arrow, represents a memory access that is a cache miss and

accesses the main memory while the other memory access

that is immediately followed by a computation resulted in

a cache hit. For simplicity in the example, we will assume

each core has only 3 MSHR entry. Since all CTAs initially

generates a memory access, the fourth CTA cannot issue its

memory instruction. In this example, we also assume that

CTA1 and CTA3 memory access creates an access to the

same cache entry and results in a conflict miss, as shown with

the dotted line with Figure 7(c)). This is another example of

where the maximum number of thread blocks degrade overall

performance and reducing the number of thread blocks can

improve overall performance. By leveraging a greedy sched-

uler as shown in Figure 7(d)), the number of instructions

issued within each thread block differs. In this example, two

thread blocks are sufficient to keep the core busy, based on

the number of instructions issued. In addition, the reduced

number of thread blocks avoid the cache eviction that occur

between CTA1 and CTA3 and avoid performance degrada-

tion. Thus, based on leveraging a greedy warp scheduler,

we propose to throttle the number of the thread blocks for

workloads that fall under the category Type II, III, and IV.

The LCS scheduling consists of three phases, monitor,

reduce, and lazy execution and is described below. We use the

terminology lazy execution since if necessary, the maximum

number of thread blocks are not allocated to each core.

Phase 1: Monitor
Based on the workload characteristics, T _max thread blocks

are initially allocated to each core. During the monitor phase,

the number of instructions issued (inst) for each thread block

x is measured. The monitor phase continues until the first

thread block finishes execution.

Phase 2: Throttle
As soon as the first thread block finishes its execution, the

new number of optimal thread block is calculated based on

the following equation:

Tnew =

⌊
Tmax

∑
x=0

(instx)/max(instx)

⌋
(1)

The total number of instruction issued across all the thread

block in the core is divided by the number of instructions

issued from the first thread block that completed, which also

corresponds to the maximum value of instx among the differ-

ent thread blocks assigned to the core. This approximation

provides the number of optimal thread blocks that should

be allocated, based on the core utilization. In the example

Figure 7(b)), Tnew = �10/4�= 3 and thus, the new maximum

number of threads blocks is reduce from 4 to 3.

Phase 3: Lazy Execution
After Phase 2 completes (i.e., all cores have Tnew active thread

blocks assigned to each core), the kernel runs to completion

with only Tnew thread blocks allocated to each core.

The algorithm is repeated for each kernel within each work-

load since the behavior of each kernel can differ. Figure 8

shows an example of Phase 1 result for LPS workload. The

x-axis is time while the y-axis represents the different thread

blocks (or CTAs) and the plots shows the number of instruc-

tions issues for each thread block. It is clear that some of the

CTAs continue to issue instruction while some CTAs (e.g,

6,7) rarely issue instructions. For this workload, the value

of Tmax is 8 initially but after phase 1, the new maximum

number of threads (Tnew) allocated to each core is reduced

to 3, using the estimation shown in Equation 1. LPS is an

example of Type-IV workload and thus, reducing the number

of thread blocks per core can improve performance. However,

0

1

2

3

4

5

6

7

0 32000 64000 96000 128000 160000 192000 224000

CT
A

ID

#
 o

f i
ns

tru
ct

io
n

iss
ue

d

40K

35K

30K

25K

20K

15K

10K

5K

0

Time (Cycles)

Figure 8: The number of issued instructions per CTA for LPS.
LPS has eight CTAs initially but the effective num-
ber of CTAs is reduced to three.

for workloads from Type-I where reducing the maximum

number of thread blocks is not necessarily beneficial, the

number of instructions issued across all of the threads are

approximately similar (i.e., Tnew = Tmax) and thus, the max-

imum number of thread blocks is not reduced and there is

minimal impact on overall performance.

Hardware Complexity: The algorithm described above can

be done for each core in the GPGPU system. However, be-

cause of the similar behavior of the thread blocks, analysis

showed that this was not necessary and the measurement is

only needed in a single core. To support LCS scheduling,

performance counters are needed to measure the number of

instructions issued from each thread block. Modern GPUs

provide performance counters to measure this metric [27, 26]

and thus, the only additional logic necessary to calculate

the number of optimal number thread blocks is the logic to

calculate Equation 1.

The performance of LCS is also determined by the length

of Phase 1 and Phase 2. As we show in Section 5, if the

number of thread blocks is relatively large, then Phase 1 and

2 represent relatively small fraction of total execution time

and the overhead is negligible. However, if there are only

small number of thread blocks, Phase 1 and Phase 2 can

represent some overhead since the optimal number of thread

blocks is not determined until the first thread block completes.

4.2. Block CTA Scheduling (BCS)
Many workloads (kernels) in GPGPU workloads are or-

ganized as a 2D array of CTAs, as shown in Figure 9(a).

The CTA or the thread block size (X ×Y) is a parameter

that is determined by the programmer but a commonly used

CTA size is a 2D 16×16 (256 threads), as suggested by the

CUDA programming manual [24]. Because of how data is

laid out, inter-CTA locality can exist among sequential CTAs

in the workloads. For example, assume a kernel with 16×16

CTA dimensions and data that is accessed by each thread

is a single word (4Bytes). Each row of data from a CTA

will occupy 16× 4 = 64 Bytes and since the cache line size

of L1 cache is 128Bytes in current GPUs, spatial locality

exists between neighboring CTAs. However, with a round-

robin thread block scheduling, the inter-CTA spatial locality

is lost since sequential CTAs are not assigned to same core,

CTA
(0, 0)

CTA
(1, 0)

CTA
(2, 0)

CTA
(3, 0)

CTA
(0, 1)

CTA
(1, 1)

CTA
(2, 1)

CTA
(3, 1)

Kernel GridX

Y

CTA
(0,0)

line0

Core 0

CTA
(2,0)

Core 1

(b) (c)

line1

L1$

CTA
(1,0)

line0

CTA
(3,0)

line1

L1$

CTA
(0,0)

line0

Core 0

CTA
(1,0)

Core 1

line1

L1$

CTA
(2,0)

line0

CTA
(3,0)

line1

L1$

(a)

Figure 9: (a) An example of kernel with Two-Dimensional
CTAs, (b) conventional round-robin thread block
scheduling and (c) proposed block CTA scheduling
(BCS).

as shown in Figure 9(b).

To exploit inter-CTA locality, we propose Block CTA

scheduling (BCS) that assigns a block of sequential thread

blocks or CTAs to the same core. In this work, we focus

on inter-CTA locality that exploits L1 cache spatial locality

– thus, we focus on a block of size 2 CTAs. BCS is not ap-

plicable to workloads with one-dimensional CTAs as there

is little inter-CTA L1 locality. Figure 9(c) shows an example

of BCS as pair of sequential CTAs are assigned to same core

and their locality can be exploited — i.e. Core 0 is assigned

CTA(0,0) and CTA(1,0) while Core 1 is assigned CTA(2,0)

and CTA(3,0). This allocation can exploit spatial locality

across the same cache line within the local L1.

One challenge in BCS is how to assign new thread blocks

when prior thread blocks finish execution since the block of

CTAs do not necessarily finish execution at the same time.

As a result, to assign sequential thread blocks to the same

core, we used delayed scheduling or assignment of thread

blocks – i.e., a new thread block is not allocated to a core

until pair of sequential thread blocks finish execution.

To effectively exploit the inter-CTA locality with BCS, the

warp scheduler also needs to be aware of inter-CTA spatial lo-

cality and schedule the warps accordingly. Thus, we propose

sequential CTA-aware (SCA) warp scheduling that combines

both round robin and greedy warp scheduling. The warps

are scheduled in a round-robin manner between two warps

of neighboring thread blocks or within a block. However, the

warp scheduler remains greedy as these set of warps are pri-

oritized, similar to GTO warp scheduler, until one of the two

warps stall. Then, the next group of warps within the same

block is scheduled. In our evaluation in Section 5, unless

otherwise noted, the result of BCS thread block scheduling

also implies that the warp scheduler used is SCA.

4.3. Combined Thread Block Scheduling
Figure 10 illustrates how both LCS and BCS can be com-

bined. Initially, the workload can be categorized as 1D or 2D

workload. For 1D workloads, the LCS described earlier in

Kernel Start

of CTAs =
MAX

2D CTA?

(CTA, warp) =
(BCS, SCA)

(CTA, warp) =
(RR, GTO)

Monitor A CTA
end?

Throttle

Lazy Execution

Kernel
end?

False True

True

False

True

False

Figure 10: The Flow Chart of Combined Architecture for
thread block scheduling, combining LCS and BCS.

Section 4.1 is applied. However, for 2D workloads, LCS and

BCS is combined as BCS described in Section 4.2 is used to

not only improve inter-CTA locality but is also leveraged to

determine the optimal number of thread blocks within LCS.

After the initial monitor phase, the new value of Tnew is used

as the maximum number of thread blocks and GTO is used

for warp scheduler for 1D workload while SCA is used as the

warp scheduler for 2D workloads. As we show later in Sec-

tio 5, the combined architecture (LCS+BCS) has no impact

on 1D workloads but improves performance on 2D workloads.

In particular, by leveraging BCS in the monitor phase, we

show how it improves scalability by increasing the number of

optimal thread blocks allocated to each core (compared with

running LCS alone) and improves overall performance.

4.4. Increasing Efficiency of GPGPUs :
mixed Concurrent Kernel Execution (mCKE)

Allocating less than the maximum number of thread blocks

to each core presents opportunities to improve the efficiency

of the GPGPUs as there are un-utilized resources. In partic-

ular, modern GPUs have very large register file and shared

memory to support the larger number of threads. For exam-

ple, NVIDIA GPUs can have 128KB register file and 48KB

shared memory per core in Fermi architecture [23] and for

the Kepler [25], the register file capacity has been doubled to

support more threads. Similar to prior work [2], the unused

resource (e.g., register file, shared memory) can be power-

gated to improve energy-efficiency with the reduced number

of thread blocks allocated to each core with LCS

In addition, the underutilized resources within a core pro-

vide opportunity for concurrent execution of different ker-

nels on the same core, which we refer to as mixed con-

current kernel execution (mCKE). Modern GPU architec-

tures support concurrent kernel execution (CKE) where in-

dependent kernels can be launched and executed at the same

time [24, 23, 25]. The main goal of CKE is to efficiently

utilize the GPU by overlapping kernel execution. However,

the baseline CKE assumes that the different kernels are exe-

cuted on different cores. Since the resources available within

Baseline
CKE

mCKE

Core 0

Core 1

Core 0

Core 1

Time

Saved
cycles

C C C C C C M M C C

M M C C C C C C C C

C

C

CC M C MC C C C

CC M C MC C C C

Kernel A Kernel B

Memory stall

C C C C C C M M C C

M M C C C C C C C C

C Computation M Memory operation

Figure 11: Block Diagram of Mixed Concurrent Kernel Execu-
tion (mCKE).

0
0.2
0.4
0.6
0.8

1
1.2
1.4

CO
NV

M
M

UL BF
S

VA
DD BP CP RA

Y
SR

AD
M

AD
D

TR
AN

FD
TD

KM
N

M
UM EI

P
3D

FD BL
K

ST
N

LB
M

LP
S

HM
EA

NNo
rm

al
ize

d
Pe

rf.

baseline LCS
3.46

Type-I Type-II Type-III Type-IV

Figure 12: Performance results of Lazy CTA Scheduling
(LCS).

a single core are not fully utilized with LCS, we propose to

assign CTAs or thread blocks from different kernels on to

the same core, which we refer to as mixed concurrent kernel
execution (mCKE)

The proposed mCKE can not only increase resource uti-

lization but improve overall performance when workloads

with different characteristics are combined on a single core.

This is also true when the mixed kernels have different char-

acteristic for resource usage. Figure 11 shows an example of

how performance can improve with mCKE, compared with

baseline CKE. We assume two kernels (kernel A and B) are

scheduled across two cores. In the baseline CKE, each core

can be stalled at different point in time while waiting for the

response from the memory and result in the core being idle

for significant amount of time. However, by interleaving the

kernels on the same core with mCKE, the memory latency

can be hidden (or overlapped) with other kernel execution

and effectively improve overall performance. This is similar

to the benefits of two-level warp scheduling [20] where the

memory accesses from the warps within a thread block are

not necessarily schedule together but partitioned into different

fetch groups.

5. Evaluation
In this section, we use the simulation methodology de-

scribed earlier in Section 2.1 and evaluate the proposed alter-

native thread block scheduling described earlier in Section 4.

5.1. Lazy CTA Scheduling Results
The results of LCS are shown in Figure 12 with the results

normalized to baseline that has greedy-then-oldest (GTO)

warp scheduler and round-robin CTA scheduler. On average,

there is approximately 7% improvement in performance but

for Type-III and Type-IV workloads, there is approximately

23% increase in performance. For Type-I and II workloads,

the purpose of LCS was to maintain the performance provided

by the baseline scheduler while for Type-III and IV work-

loads, the goal was to reduce the number of thread blocks

and improve performance. As a result, LCS resulted in very

little improvement or slight degradation in performance for

Type-I and II workloads. For Type III and IV workloads,

LCS improves overall performance by reducing the maxi-

mum number of thread blocks that can be assigned to a core

and improve L1 and/or L2 cache utilization.

Figure 13 shows the number of CTAs allocated to a core

with LCS. The results are compared against the baseline

which allocates the maximum number of CTAs for each core

(determined by the usage of shared resources such as the reg-

ister file or shared memory). In addition, we also compared

against the optimal number of thread blocks (OPT), which

is the number of thread blocks when performance saturates

or reaches its peak – based on the simulations shown earlier

in Figure 4. In general, LCS is able to approach the optimal

number of thread blocks and in general, reduce the number

of thread blocks, compared with the baseline.

However, for some of the workloads (such as MUM) from

Type-III workloads, even though LCS was able to determine

the near optimal number of thread blocks, the performance

improvement was very minimal – only a few percent increase

in performance for MUM (Figure 12). As described earlier in

Section 4.1, the minimal performance improvement is from

the overhead of the monitor phase in LCS and the total num-

ber of thread blocks. For MUM which has a total of 196

CTAs, approximately 57% of the CTAs are initially assigned

to all of the cores and thus, Phase 1 (monitor phase) resulted

in a significant fraction of total execution time and overall

benefit from LCS was relatively small. For some workloads,

such as MMUL, there was some performance degradation as

the number of optimal thread blocks determined by LCS was

smaller than OPT value — OPT was 3 CTAs while LCS deter-

mined it to be two. With the relatively small number of CTAs

allocated to each core, the allocation of only two CTA (com-

pared with 3 CTAs), meant the number of available threads

were reduced by approximately 1/3 and resulted in the per-

formance loss. To minimize the performance degradation

for Type-I workloads, one modification to the LCS algorithm

in Equation 1 would be to use the �Tnew� instead of �Tnew�.

This would result in a trade-off in performance improvement

of Type-I workload, while resulting in some performance

improvement loss for Type-III and Type-IV workloads.

The energy improvements are shown in Figure 14 for the

entire GPGPU, including the core, on-chip memory and net-

work, and memory controller. We assume ideal power-gating

such that unused resources (such as shared memory and regis-

ter file) are power-gated without any overhead for the baseline

0
1
2
3
4
5
6
7
8

CO
NV

M
M

UL BF
S

VA
DD BP CP RA

Y
SR

AD
M

AD
D

TR
AN

FD
TD

KM
N

M
UM EI

P
3D

FD BL
K

ST
N

LB
M

LP
S

HM
EA

N

Av
er

ag
e

#
 o

f C
TA

s

baseline LCS (Tne) OPT

Type-I Type-II Type-III Type-IV

Figure 13: The optimal number of CTAs (OPT), compared with
Tnew determined by LCS.

0
0.2
0.4
0.6
0.8

1
1.2

CO
NV

M
M

UL BF
S

VA
DD BP CP RA

Y
SR

AD
M

AD
D

TR
AN

FD
TD

KM
N

M
UM EI

P
3D

FD BL
K

ST
N

LB
M

LP
S

HM
EA

N

No
rm

al
ize

d
En

er
gy

baseline LCS

Type-I Type-II Type-III Type-IV

Figure 14: Energy saving results of LCS

and if there are unutilized resources, we assume it is power-

gated. For LCS, when less than the maximum number of

threads blocks are allocated, additional resources are power-

gated. Across all type of workloads, LCS results in energy

improvement, up to 37% for Type-III workloads and on aver-

age, 11% improvement.

5.2. Block CTA Scheduling Results
Results from Block CTA Scheduling (BCS) is shown in

Figure 16 for only 2D workloads. We compare the results of

baseline with BCS using GTO warp scheduler as well as SCA

warp scheduler. On average, BCS+GTO results in only 3%

improvement in performance as only the block assignment

of thread blocks to each core does not necessarily result in

performance improvement with a GTO warp scheduler. In

comparison, BCS+SCA is able to improve performance by

15% on average and up to 70% for some of the workloads

as the SCA warp scheduler is able to fully exploit the inter-

CTA cache locality. For workloads such as STN which has

a thread block size of 32 in the x-dimension (larger than

16), it does not necessarily exploit the same inter-CTA L1

locality as the other workloads but there is still approximately

7% performance improvement. Since this is a stencil-type

workload, data is still shared between adjacent thread blocks

and BCS helps to improve overall performance.

Figure 17 shows the L1 data miss rate improvement with

BCS. Results show that the combination of BCS+SCA signif-

icantly reduces the L1 miss rate while BCS+GTO does not

provide the same benefit – on average, BCS+SCA reduce L1

miss rate by 24% while BCS+GTO only reduces L1 miss rate

by 8%. However, for some workloads such as MMUL, L1

0
0.2
0.4
0.6
0.8

1
1.2

1 2 3 4 5 6 7 8

No
rm

al
ize

d
Pe

rf.

of CTAs

GTO BCS 0
0.2
0.4
0.6
0.8

1
1.2

1 2 3 4

No
rm

al
ize

d
Pe

rf.

of CTAs

GTO BCS

(a) LPS (b) 3DFD

Figure 15: Performance when varying the number of thread
block allocated to each core for (a) LPS and (b)
3DFD with BCS.

0

0.5

1

1.5

2

M
M

UL

3D
FD

SR
AD

CO
NV BP LP

S

RA
Y

M
AD

D

TR
AN

FD
TD ST
N CP

HM
EA

NNo
rm

al
ize

d
Pe

rf.

baseline BCS+GTO BCS+SCA

Figure 16: Performance of results with Block CTA schedul-
ing (BCS) and Sequential CTA-aware (SCA) warp
scheduling.

miss rate is decreased by more than 30% but there is min-

imal impact on overall performance. As described earlier

in Section 4.2, one possible performance overhead of BCS

is the delayed thread block assignment in order to assign

consecutive CTAs to the same core. For most of the work-

loads, this had minimal impact since this additional delay is

hidden as long as the core is active with other thread blocks.

However, for MMUL with only 4 thread blocks per core, the

delayed thread block scheduling results in only 50% occu-

pancy. Thus, although the miss rate is reduced with BCS,

the delayed thread block assignment negates the benefit from

reduce miss rate. For workload such as BP which had very

little inter-CTA locality and consisted of more write than

reads, BCS+SCA results is slight performance degradation.

With BCS, additional benefit is the increased scalability

of the workload as additional thread blocks helps to improve

overall performance. Figure 15 shows the performance scal-

ing when increasing the number of thread blocks for each

core for two particular workloads (LPS and 3DFD), compar-

ing the baseline with GTO and BCS+SCA. Both of these

workloads were classified as Type-IV workloads earlier with

baseline GTO where performance started to decrease after

some number of thread blocks were assigned. However, after

using BCS, the behavior of the workloads approaches Type-I

or II as the improved thread block scheduling, in combination

with appropriate warp scheduling, improve the efficiency of

the resources.

5.3. Mixed Concurrent Kernel Execution Results
The results of mCKE is shown in Figure 18 and compared

with baseline CKE. Since workloads that we evaluated do

0%
20%
40%
60%
80%

100%
M

M
UL

3D
FD

SR
AD

CO
NV BP LP

S

RA
Y

M
AD

D

TR
AN

FD
TD

ST
EN CP

HM
EA

N

L1
 M

iss
 R

at
e

baseline BCS+GTO BCS+SCA

Figure 17: L1 cache miss rate comparisons.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

- P MMUL-VADD MUM-BLK MMUL CP-MADD KMN-SRAD

N
or

m
al

iz
ed

 P
er

f.

conventional CKE MCKE

Figure 18: Performance Results for Mixed Concurrent Kernel
Execution.

not leverage concurrent kernel execution, we merge different

workloads such that we can execute CKE, similar to prior

work [28]. The different workload mixes are summarized in

Table 3 and the number of CTAs allocated to each core is

based on the optimal number of thread blocks from LCS. For

the baseline CKE, we also assume the LCS was used such

that the optimal number of thread blocks were allocated. For

some of the workload mix, mCKE has minimal impact on

overall performance compared with baseline CKE. However,

for other mix of workloads such as KMN-SRAD, mCKE

results in up to 27% improvement in performance. For KMN

where the optimal number of thread blocks was only one

thread block with LCS, it provides opportunity for perfor-

mance improvement with additional kernel executing on the

same core. In addition, for a given workload, the benefit of

mCKE depends on which workload it is mixed with – for

example, CP-MADD mix has minimal impact from mCKE

while CP-LPS results in 20% improvement with mCKE. CP-

MADD results in another form of load-imbalance as the

execution time of the two workloads differs significantly and

mCKE has minimal impact. In comparison, LPS is a memory

intensive workload while CP is compute intensive – thus, mix

of these two kernels improves resource utilization to result in

performance gain.

5.4. Comparison to Alternative Scheduling
We compare the performance of the proposed thread block

scheduling with two previously proposed warp scheduler

(TLV and CCWS) and a CTA scheduler (DYNCTA). The

results are normalized to GTO warp scheduler [29].

Two-Level Round Robin scheduler (TLV) [20]: The

warp scheduler subdivides warps to fetch groups and select

from one fetch groups until all warps in the fetch groups are

stalled. It schedules Round Robin in a fetch group.

Mixed workloads Type # of CTAs per kernel
CP-LPS II - IV 3, 5

MMUL-VADD I - II 2, 3

MUM-BLK III - IV 2, 4

MMUL-RAY I - II 2, 2

CP-MADD II - II 3, 4

KMN-SRAD III - II 1, 5

Table 3: Workload Description for mCKE evaluation.

Cache Conscious warp scheduler (CCWS) [29]: The

warp scheduler dynamically controls the number of warps

which are allowed to be scheduled to improves L1 hit rates for

cache-sensitive applications. Within CCWS, GTO scheduling

is used within the selected warp boundary.

Dynamic CTA Scheduling (DYNCTA) [16]: The CTA

scheduler initially allocates Tmax/2 thread blocks to each core

and the number of CTAs is incremented or decremented by 1

continuously for within each sampling period. DYNCTA uses

CTA pausing to deprioritize the warps in the most recently

assigned CTA on the SM. We use DYNCTA with GTO warp

scheduler for fair comparison.

Figure 19 shows the results comparison and we show both

LCS and combined LCS+BCS. On average, LCS+BCS ex-

ceeds the performance of other scheduler, by 16% compared

with the baseline GTO scheduler, by 13% over CCWS warp

scheduler and by 14% over DYNCTA scheduler. CCWS

performs well on cache sensitive workloads (such as KMN)

but LCS+BCS exceeds the performance of CCWS on these

workloads. CCWS uses a victim tag array in the L1 cache and

warp scheduling reacts to the hit rate of the victim tag array

to reduce the number of active threads on a core. In com-

parison, the LCS+BCS the number of thread blocks to one

after the completion of a single thread block and maintains

it throughout the execution of the kernel. In our configura-

tion, the optimal number of warps for KMN was closer to 8

warps, hich was the size of the thread block. If the optimal

number of warp was significantly less than 8 warps (or the

size of a single thread block), LCS+BCS cannot further re-

duce the number of warps scheduled and a warp scheduler

such as CCWS could further improve performance. How-

ever, for EIP, CCWS outperform LCS+BCS by 13%. Sim-

ilar to MUM, EIP is also a workload with relatively small

number of thread blocks and thus, Phase 1 and Phase 2 of

LCS represents a significant amount of entire execution time.

As a result, LCS+BCS is not able to adjust the number of

thread blocks quickly enough while CCWS, working at the

warp granularity, is able to adjust the warps scheduled more

quickly. Instead of using GTO as the baseline warp scheduler,

CCWS can also be used as the warp scheduler within LCS

to improve performance on workloads such as EIP, but at the

cost of higher complexity warp scheduler. However, in gen-

eral, LCS+BCS outperform CCWS since CCWS only targets

workloads which have intra-warp locality [29] in L1 cache

while LCS+BCS can be applied to wide range of workloads.

LCS (and LCS+BCS) provides performance improvement

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

CONV MMUL BFS VADD BP CP RAY SRAD MADD TRAN FDTD KMN MUM EIP 3DFD BLK STN LBM LPS HMEAN

No
rm

al
ize

d
Pe

rf.
TLV CCWS DYNCTA LCS LCS+BCS

Type-I Type-II Type-III Type-IV

Figure 19: Performance comparison against CCWS, TLV, and DYNCTA. The results are normalized to GTO.

of TLV but for a few of the workloads (e.g., BLK), TLV

provides the best performance improvement. Since TLV par-

titions the warps within a group into different fetch groups

and schedules within the fetch group before moving on to

the next fetch group, it can be more effective in hiding the

memory latency and also improves the inter-CTA L2 local-

ity – compared with LCS, the TLV reduces L2 miss rate by

approximately 10%. Similar to CCWS, if TLV is used as

the warp scheduler for such workloads within LCS, LCS can

likely provide further benefits as well.

Performance of LCS+BCS also exceeds the performance

DYNCTA by 14%, on average. We used the same set of

thresholds that were used in [16]. Since DYNCTA depends

on empirically thresholds to determine whether to increase or

decrease the number of thread blocks assigned to each core,

a single of set of threshold is not likely to be optimal across

all the workloads. In addition, in our evaluation, we noted

that DYNCTA can unnecessarily fluctuate in the number of

thread blocks allocated to each and impact performance. Note

that prior work [16] showed performance benefits while our

results do not show significant benefits of DYNCTA. One

key difference is that the baseline we assumed is a greedy,

GTO warp scheduler. Load-imbalance [4] was one aspect

that DYNCTA tried to address but with a greedy scheduler,

most of the load-imbalance problem can be removed and thus,

the benefit of DYNCTA was reduced.

In addition, on average, LCS provided 8% improvement in

performance while LCS+BCS provided 15% improvement.

For some of the workloads (such as LPS and 3DFD). the use

of LCS+BCS improved the scalability as the optimal number

of thread blocks increased and improved overall performance

(as shown earlier in Figure 15).

6. Related Work
To improve the performance in GPGPU architectures,

different schedulers have been proposed. The two-level

warp scheduling [20], cache-conscious warp scheduling

(CCWS) [29], and dynamic CTA scheduling (dynCTA) [16]

were discussed earlier in Section 5.4 and compared with our

proposed scheduling mechanism. Gebhart et al. [11] also

proposed two-level warp scheduling for energy efficiency in

GPUs where warps are separated into active set and pending

set. The Cooperative Thread Array Aware Scheduling [15]

differs from prior warp schedulers as it is CTA-aware but

it is still based on the warp scheduler. CTA pausing [16]

was presented to deprioritize CTAs in order to reduce the

number of CTA scheduled on a core and is similar to the

Throttle phase in the proposed LCS algorithm. Laskshmi-

narayana et al. [17] explore many warp scheduling in GPUs.

They observe that the performance of workloads with a bal-

anced instructions per warp increase the fairness of their

warp scheduling and dram scheduling policy. Fung et al. [9]

proposed Dynamic Warp Formation(DWF) to reduce under-

utilization of resources from branch divergence. Thread block

compaction [8] improved upon DWF by exploit control flow

locality among threads. There are some similarities of this

work with prior work in different aspects while some of the

previously techniques are orthogonal and can be combined

with the alternative thread block scheduling proposed in this

work. However, this work differs as it explores the interaction

between the warp and thread block scheduling to increase

overall efficiency.

In evaluating scheduling and prefetching within GPGPU,

Jog et al. [14] used a CTA allocation strategy where consec-

utive CTAs were assigned to the same core in their baseline

architecture. This share similarity with BCS but there is no

analysis on the impact of such CTA scheduling or the benefits.

In addition, it is not clear exactly how additional CTAs are

allocated after CTAs complete. As discussed earlier, prior

work [4, 16] have also made similar observation as this work

that maximal number of CTAs per core is not not always the

optimal policy – i.e., increasing the number of CTAs does

not necessarily improve performance. However, no solution

was provided in [4] and a detailed comparison with [16] was

discussed earlier in Section 5.4.

Within general purpose CPUs, prior work has also shown

that more threads are not necessarily better in CPUs. Guz

et al. [13] described the “performance valley” where too

many threads can degrade performance because of resource

contention. Suleman et al. [31] showed similar results for

multithreaded workloads and described a dynamic method to

find the optimal number of threads. Cheng et al. [7] proposed

a thread throttling scheme to reduce memory access latency

in a multithreaded system. However, the number of threads

in a conventional processor is significantly smaller than the

GPGPU architecture that we consider and these techniques

are not necessarily applicable to GPGPU architectures with

thousands of threads.

Adriaens et al. [3] proposed spatial multi-tasking where

multiple applications share the GPU resources by partitioning

cores among the different applications. However, in our

work, the core resources are partitioned among the different

kernels. Phi et al. [28] propose a kernel converting technique,

Elastic Kernel, which allows fine-grained control of GPU

resources. The number of logical and physical thread blocks

mapped can be changed to maximize utilization of GPU

resource by transformation of the kernel. Gregg et al. [12]

introduce kernel scheduling framework and, kernel merge,

which increase the concurrency of kernel execution. Kernel

merge provides a tuning ability of control executing thread

blocks with different scheduling algorithms. It remains to

be seen how mixed concurrent kernel execution can leverage

these techniques to further improve overall performance.

7. Conclusion
In this work, we explored alternative thread block or CTA

scheduling in GPGPU to improve performance. We first ana-

lyzed how varying the number of thread blocks allocated to

each core impacts performance. Since the maximum num-

ber of thread blocks does not necessarily maximize perfor-

mance, we propose LCS (lazy CTA scheduling) that leverages

a greedy warp scheduler to determine the optimal number

of thread blocks per core. In addition, we show how BCS

(block CTA scheduling), where consecutive thread blocks are

assigned to the same cores, can exploit inter-CTA locality to

improve overall performance. To efficiently leverage BCS,

we propose an alternative warp scheduler that is aware of

the consecutive thread blocks allocated to the same core and

exploit the inter-CTA locality. In addition, since the maxi-

mum number of thread blocks does not necessarily improve

performance, we exploit this opportunity by proposing mixed
concurrent kernel execution to improve performance and re-

source utilization by executing multiple kernels on the same

core.

Acknowledgements
We would like to thank the anonymous reviewers and our

shepherd, Tom Conte, for their comments. This work was

supported in part by the IT R&D program of MSIP/KEIT

(10041313, UX-oriented Mobile SW Platform) and in part

by Basic Science Research Program through the National

Research Foundation of Korea(NRF) funded by the Ministry

of Science, ICT & Future Planning (NRF-2011-0015039).

References
[1] K. M. Abdalla et al. Scheduling and Execution of Compute Tasks,

US Patent US20130185725, 2013.
[2] M. Abdel-Majeed et al. Warped Register File: A Power Efficient

Register File for GPGPUs. In International Symposium on High
Performance Computer Architecture (HPCA), pages 344–355, Tel-
Aviv, Israel, 2013.

[3] J. Adriaens et al. The Case for GPGPU Spatial Multitasking. In In-
ternational Symposium on High Performance Computer Architecture
(HPCA), pages 1–12, New Orleans, LA, USA, 2012.

[4] A. Bakhoda et al. Analyzing CUDA Workloads using a Detailed GPU
Simulator. In International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 163–174, Boston, Mas-
sachusetts, USA, 2009.

[5] I. A. Buck. Programming CUDA. In Supercomputing 2007 Tutorial
Notes, 2007.

[6] S. Che et al. Rodinia: A Benchmark Suite for Heterogeneous Com-
puting. In International Symposium on Workload Characterization
(IISWC), pages 44–54, Austin, TX, USA, 2009.

[7] H.-Y. Cheng et al. Memory Latency Reduction via Thread Throttling.
In International Symposium on Microarchitecture (MICRO), pages
53–64, Atlanta, Georgia, USA, 2010.

[8] W. W. L. Fung et al. Thread block compaction for efficient simt
control flow.

[9] W. W. L. Fung et al. Dynamic Warp Formation and Scheduling
for Efficient GPU Control Flow. In International Symposium on
Microarchitecture (MICRO), pages 407–420, Chicago, Illinois, USA,
2007.

[10] M. Garland et al. Parallel Computing Experiences with CUDA. Micro,
IEEE, 28(4), 2008.

[11] M. Gebhart et al. Energy-Efficient Mechanisms for Managing Thread
Context in Throughput Processors. In International Symposium on
Computer architecture (ISCA), pages 235–246, San Jose, California,
USA, 2011.

[12] C. Gregg et al. Fine-Grained Resource Sharing for Concurrent
GPGPU Kernels. In Proceedings of the 4th USENIX Conference
on Hot Topics in Parallelism (HotPar), pages 10–10, Berkeley, CA,
USA, 2012.

[13] Z. Guz et al. Many-Core vs. Many-Thread Machines: Stay Away
From the Valley. IEEE Computer Architecture Letters, 8(1):25–28,
2009.

[14] A. Jog et al. Orchestrated Scheduling and Prefetching for GPGPUs.
In Proceedings of the 40th Annual International Symposium on Com-
puter Architecture (ISCA), pages 332–343, Tel-Aviv, Israel, 2013.

[15] A. Jog et al. OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance. In International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 395–406, Houston, TX,
USA, 2013.

[16] O. Kayiran et al. Neither More Nor Less: Optimizing Thread-Level
Parallelism for GPGPUs. In International Conference on Parallel
Architecture and Compiliation Techniques(PACT), pages 157–166,
Edinburgh, Scotland, UK, 2013.

[17] N. B. Lakshminarayana et al. Effect of Instruction Fetch and Memory
Scheduling on GPU Performance. Workshop on Language,Compiler,
and Architecture Support for GPGPU, 2010.

[18] J. Leng et al. GPUWattch: Enabling Energy Optimizations in GPG-
PUs. In International Symposium on Computer Architecture (ISCA),
pages 487–498, Tel-Aviv, Israel, 2013.

[19] A. Munshi. The OpenCL Specification, 2011.
[20] V. Narasiman et al. Improving GPU Performance via Large Warps

and Two-Level Warp Scheduling. In International Symposium on
Microarchitecture (MICRO), pages 308–317, Porto Alegre, Brazil,
2011.

[21] J. Nickolls et al. The GPU Computing Era. Micro, IEEE, March-April.
[22] NVIDIA. CUDA C/C++ SDK Code Samples, 2011.
[23] NVIDIA. Fermi: NVIDIA’s Next Generation CUDA Compute Archi-

tecture, 2011.
[24] NVIDIA. CUDA C Programming Guide, 2012.
[25] NVIDIA. Kepler: The Fastest, Most Efficient HPC Architecture Ever

Built, 2012.
[26] NVIDIA. NVIDIA PerfKit: NVIDIA Performance Toolkit, 2013.
[27] NVIDIA. Profiler User’s Guide, 2013.
[28] S. Pai et al. Improving GPGPU Concurrency with Elastic Kernels.

In International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 407–418,
Houston, TX, USA, 2013.

[29] T. Rogers et al. Cache-Conscious Wavefront Scheduling. In Inter-
national Symposium on Microarchitecture (MICRO), pages 78–85,
Vancouver, Canada, 2012.

[30] J. Stratton et al. Parboil: A Revised Benchmark Suite for Scientific
and Commercial Throughput Computing. Center for Reliable and
High-Performance Computing, 2012.

[31] M. A. Suleman et al. Feedback-Driven Threading: Power-Efficient
and High-Performance Execution of Multi-Threaded Workloads on
CMPs. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages
277–286, Seattle, WA, USA, 2008.

