
21

Designing On-Chip Networks for Throughput Accelerators

ALI BAKHODA, University of British Columbia
JOHN KIM, Korea Advanced Institute of Science and Technology
TOR M. AAMODT, University of British Columbia

As the number of cores and threads in throughput accelerators such as Graphics Processing Units (GPU) in-
creases, so does the importance of on-chip interconnection network design. This article explores throughput-
effective Network-on-Chips (NoC) for future compute accelerators that employ Bulk-Synchronous Parallel
(BSP) programming models such as CUDA and OpenCL. A hardware optimization is “throughput effective” if
it improves parallel application-level performance per unit chip area. We evaluate performance of future look-
ing workloads using detailed closed-loop simulations modeling compute nodes, NoC, and the DRAM memory
system. We start from a mesh design with bisection bandwidth balanced to off-chip demand. Accelerator
workloads tend to demand high off-chip memory bandwidth which results in a many-to-few traffic pattern
when coupled with expected technology constraints of slow growth in pins-per-chip. Leveraging these ob-
servations we reduce NoC area by proposing a “checkerboard” NoC which alternates between conventional
full routers and half routers with limited connectivity. Next, we show that increasing network terminal
bandwidth at the nodes connected to DRAM controllers alleviates a significant fraction of the remaining
imbalance resulting from the many-to-few traffic pattern. Furthermore, we propose a “double checkerboard
inverted” NoC organization which takes advantage of channel slicing to reduce area while maintaining the
performance improvements of the aforementioned techniques. This organization also has a simpler routing
mechanism and improves average application throughput per unit area by 24.3%.

Categories and Subject Descriptors: C.1.2 [Computer Systems Organization]: Multiprocessors—
Interconnection architectures

General Terms: Design, Performance

Additional Key Words and Phrases: Bulk-synchronous parallel, throughput accelerator, GPGPU, NoC

ACM Reference Format:
Bakhoda, A., Kim, J., and Aamodt, T. M. 2013. Designing on-chip networks for throughput accelerators. ACM
Trans. Architec. Code Optim. 10, 3, Article 21 (September 2013), 35 pages.
DOI: http://dx.doi.org/10.1145/2512429

1. INTRODUCTION

The Bulk-Synchronous Parallel (BSP) programming model [Valiant 1990] is attractive
for throughput accelerators since it provides relatively simple software scalability as
the number of cores increases with Moore’s Law. Languages such as CUDA [Nickolls

A preliminary version of this work appeared in the 43rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO) [Bakhoda et al. 2010].
This work was partially supported by the Natural Sciences and Engineering Research Council of Canada.
J. Kim was supported in part by MSIP (Ministry of Science, ICT & Future Planning), Korea, under the ITRC
(Information Technology Research Center) support program supervised by the NIPA (National IT Industry
Promotion Agency) (NIPA-2013-H0301-13-1011) and in part by the National Research Foundation of Korea
(NRF) grant funded by the Korean Government (MSIP) 2011-0015039.
Authors’ addresses: A. Bakhoda (corresponding author), Electrical and Computer Engineering Department,
University of British Columbia, Vancouver, BC, Canada; email: bakhoda@ece.ubc.ca; J. Kim, Division of Web
Science and Technology and Department of Computer Science, Korea Advanced Institute of Science and
Technology, Daejeon, Korea; T. M. Aamodt, Electrical and Computer Engineering Department, University of
British Columbia, Vancouver, BC, Canada.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
2013 Copyright is held by the author/owner(s)
1544-3566/2013/09-ART21 $15.00
DOI: http://dx.doi.org/10.1145/2512429

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:2 A. Bakhoda et al.

C0

re
qu

es
t n

et
w

or
k

C1

Core output
bandwidth

C2

MC input
bandwidth

MC output
bandwidth

Core input
bandwidth

C0

C1

Cn

C2

re
pl

y
ne

tw
or

k

Cn

MCm

MC1

MC0

Fig. 1. Many-to-few-to-many on-chip traffic. C nodes are the compute cores and the MC nodes are the
memory controllers/memory.

et al. 2008; NVIDIA 2010], OpenCL [Khronos Group 2010], and recently proposed pro-
gramming models for future accelerator architectures [Kelm et al. 2010a] embody the
BSP model. In this article, we explore the on-chip network design space for compute
accelerators. Our goal is to find NoC designs for future compute accelerator architec-
tures employing BSP-like programming models that provide the best performance per
unit area cost, that is, those that are throughput effective.

Highly multithreaded applications running on multicore microprocessors may have
coherence traffic and data sharing resulting in significant core-to-core communication.
In contrast, accelerator applications written in a BSP style [Che et al. 2009; Kelm
et al. 2010a] tend to organize communication to be local to a group of threads that can
execute on hardware units that are located close together and have less communication
between threads in different groups even when coherence is supported [Kelm et al.
2010a, 2010b]. Consequently, as the number of pins on a chip is growing only 10%
per year [ITRS 2008], the net effect of increases in transistor density on accelerator
architectures is an increasingly many-to-few traffic pattern [Abts et al. 2009] with
many compute cores sending traffic to a few Memory Controller (MC) nodes. Using
detailed closed-loop simulation, we identify how the many-to-few-to-many traffic causes
another performance bottleneck. A high-level diagram of this communication pattern
is illustrated in Figure 1. As we will see, MCs become hotspots in the system and
have much higher injection rates than the compute cores due to the prevalence of
read requests in the system which are small packets but result in large read-reply
packets.

An implication of this is the following. Starting from a baseline mesh topology
with bisection bandwidth balanced to effective off-chip memory bandwidth (labeled
“Balanced Mesh” in Figure 2) application-level throughput can be increased while
maintaining a regular NoC topology by naively increasing channel bandwidth. The
“2x BW” data point in Figure 2 shows the impact this has on throughput effectiveness
(IPC/mm2). This figure decomposes throughput per unit chip area as the product of
application-level throughput (measured in scalar Instructions Per Cycle—IPC) on
the x-axis and inverse area (1/mm2) on the y-axis1. Curves in this figure represent
constant throughput effectiveness (IPC/mm2) and design points closer to the top
right near “Ideal NoC” are more desirable. An ideal NoC has infinite bandwidth, zero
latency, and zero NoC area. In contrast, the “Thr. Eff.” point results from modifying
the baseline NoC to take advantage of the many-to-few-to-many traffic, resulting in a
design closer to the throughput effectiveness of an ideal NoC than alternative designs.

1Average throughputs are for benchmarks in Table I, described in Section 2, using configurations described
in Section 5. The area estimates are from Section 5.9 assuming 244mm2 is used for non-NoC parts of chip.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:3

Fig. 2. Throughput-effective design space. “Balanced Mesh”: bisection bandwidth balanced to off-chip DRAM
bandwidth (Section 3); “Thr. Eff.”: mesh network optimized for many-to-few-to-many traffic (Section 4); “2x
BW”: mesh with double channel width.

The contributions of this article are as follows.

—We present a limit study on the impact of on-chip networks across a wide range of
compute accelerator applications, identifying the impact of on-chip communication
on overall performance. Based on our analysis, we show how conventional network
improvements (such as reducing router latency) do not significantly improve overall
performance while simply increasing channel width results in significant perfor-
mance gains but with a large and unacceptable area increase. Consequently, we pro-
pose simultaneously considering the effect of the NoC on parallel application-level
performance and chip area to find NoCs which are throughput effective.

—We identify that the many-to-few-to-many traffic pattern of throughput accelerators
(more compute nodes than MCs) creates a traffic imbalance and show how the overall
system performance is directly correlated with the injection rate of the few MC nodes.

—Based on the aforesaid observations, we propose a throughput-effective design that
includes a novel checkerboard network organization using half routers with limited
connectivity to reduce the on-chip network area while having minimal impact on per-
formance. The throughput-effective design also includes a multiport router structure
to provide additional terminal bandwidth on the few routers connected to the MCs
that improves system performance at minimal area cost.

—We propose a “Double Checkerboard Inverted” (DCI) network organization which
maintains the benefits of the preceding techniques while having a simpler routing
mechanism. This design utilizes a special form of channel slicing where each compute
or MC node is connected to both a half and a full router.

—We demonstrate how to extend the DCI network organization to operate with more
sophisticated routing mechanisms. By employing two simple injection rules, we show
how “Class-based Deterministic Routing” (CDR) can be used in conjunction with DCI
without incurring any area overhead.

—We investigate the interactions of various MC placements and our proposed
throughput-effective techniques, discuss the implementation trade-offs of periph-
eral versus scattered placements, and demonstrate how to benefit from our proposed
techniques in both cases of peripheral and scattered MC placement.

Figure 3 shows a visual organization of the building blocks for throughput-effective
design options we explore in this article. Throughput-effective designs can be achieved
by either increasing the application-level performance or decreasing the area foot-
print of system components: Checkerboard network organization and channel slic-
ing reduce area while multiport MC routers and optimized MC placement provide
application-level speedups. We will combine these basic techniques or their enhanced
versions to achieve a throughput-effective design.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:4 A. Bakhoda et al.

Fig. 3. Overview of building blocks for throughput-effective designs explored in this article.

The rest of this article is organized as follows: Section 2 summarizes background
information, Section 3 identifies important insights into NoC behavior of throughput
accelerator architectures, Section 4 describes our proposed NoC, Section 5 describes
experimental results, Section 6 provides discussions, Section 7 summarizes related
work, and we conclude in Section 8.

2. BASELINE ARCHITECTURE

In this section we describe our baseline accelerator architecture and on-chip inter-
connect. Throughput accelerators can be classified along several dimensions: SIMT2

versus SIMD, degree of multithreading per core, support for caching and coherence,
and the granularity at which heterogeneity is introduced. We study a generic archi-
tecture with some similarities to NVIDIA’s Fermi [NVIDIA 2009] and GeForce GTX
280, but our baseline is not meant to be identical to any specific GPU. We believe that
our conclusions are applicable to other architectures. We employ benchmarks written
in CUDA [Nickolls et al. 2008; NVIDIA 2010], which is similar to the open standard
OpenCL [Khronos Group 2010]. Many of the benchmarks we use (see Table I) are
“dwarves” [Asanovic et al. 2009] from Rodinia [Che et al. 2009].

Our baseline architecture is illustrated in Figures 4, 5, and 6. Figure 4 illustrates the
overall chip layout showing the placement of compute nodes and memory controller
nodes. In this work, we assume a 2D mesh topology with the Memory Controllers
(MCs) placed on the top and the bottom rows, similar to the topology and layout used
in Intel’s 80-core design [Vangal et al. 2008] and Tilera TILE64 [Wentzlaff et al. 2007]
processors. We are interested in a general-purpose accelerator architecture, therefore,
similar to Intel’s Pangaea [Wong et al. 2008], we do not consider fixed function graphics
hardware.

2.1. Network

Current GPUs often use a crossbar with concentration (to share a single port among
several cores). This results in a few number of ports and makes the crossbar a viable
option but as the number of cores is bound to increase in the future, the scalability of
this approach will be limited. It has been shown that the overheads of high cardinality
switches (e.g., a 30 × 30 crossbar) are unacceptable [Pullini et al. 2007]. A crossbar
would be connecting components that are scattered throughout the chip. Routing very
long wires to and from a central crossbar is neither easy nor inexpensive. In addition,
prior work [Bakhoda et al. 2009], which included a crossbar comparison, showed that
for the workloads we consider performance is relatively insensitive to topology. Thus,

2Single-instruction multiple thread (SIMT): groups of scalar threads execute on an SIMD pipeline using hard-
ware mechanisms to selectively enable or disable processing elements without need for compiler-generated
predication [Levinthal and Porter 1984; Coon and Lindholm 2008].

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:5

Table I. Benchmark Abbreviations and Their Sources (Rodinia [Che et al. 2009], SDK [CUDA SDK 2009],
and GPGPU-Sim [Bakhoda et al. 2009])

Name Abbr. Name Abbr.

Kmeans (Rodinia) KM CFD Solver (Rodinia) CFD
Leukocyte (Rodinia) LE Heart Wall Tracking (Rodinia) HT
LU Decomposition (Rodinia) LU Similarity Score (Rodinia) SS
Back Propagation (Rodinia) BP Streamcluster (Rodinia) STC
HotSpot (Rodinia) HSP Needleman-Wunsch (Rodinia) NDL
Speckle Reducing Anisotropic SR Neural Network Digit NE
Diffusion (Rodinia) Recognition (GPGPU-Sim)
BFS Graph Traversal (Rodinia) BFS Nearest Neighbor (Rodinia) NNC
AES Cryptography (GPGPU-Sim) AES MUMmerGPU(Rodinia, GPGPU-Sim) MUM
Black-Scholes Option Pricing (SDK) BLK LIBOR Monte Carlo (GPGPU-Sim) LIB
Binomial Option Pricing (SDK) BIN Matrix Multiplication [Ryoo et al. 2008] MM
Separable Convolution (SDK) CON Ray Tracing (GPGPU-Sim) RAY
3D Laplace Solver (GPGPU-Sim) LPS Matrix Transpose (SDK) TRA
Fast Walsh Transform (SDK) FWT Parallel Reduction (SDK) RD
gpuDG (GPGPU-Sim) DG Scalar Product (SDK) SCP
64-bin Histogram (SDK) HIS Scan of Large Arrays (SDK) SLA
Weather Prediction (GPGPU-Sim) WP

Fig. 4. Compute accelerator show-
ing layout of compute node routers
and MC node routers in baseline
mesh. Shaded routers on top and
bottom are connected to MCs.

Dispatch
Queue
(Warps)

OC

DD

L1 D$ S .

SIMT
stacks

L1 I$

Router

Compute
Node

Fig. 5. Compute node.

L2 bank

Memory
Controller

GDDR3Off-Chip GDDR

MC
Node

Router

Fig. 6. Memory
controller node.

we chose a 2D mesh topology since it provides a very regular, simple, and scalable
network [Balfour and Dally 2006]. To avoid protocol deadlock, request and reply traffic
have dedicated virtual channels. Comparisons with asymmetric crossbars as well as
topologies such as CMesh and flattened butterfly are presented in Sections 6.1 and 6.2,
respectively. The techniques provided in this work are orthogonal to concentration as
we will discuss in more detail in Sections 6.1 and 6.3.

2.2. Compute Nodes and Memory Controllers

Figure 5 illustrates a compute node. We assume 8-wide SIMD pipelines that execute
“warps” (NVIDIA terminology; similar to “wavefronts” in AMD’s terminology) consist-
ing of 32 scalar threads executed over four clock cycles. Each compute core maintains a
dispatch queue holding up to 32 ready warps (representing up to 1024 scalar threads).
Memory operations (loads and stores) to global memory (visible to all threads on all
cores) go through a memory divergence detection stage (DD) that attempts to “coalesce”
memory accesses from different scalar threads within a warp that access a single L1

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:6 A. Bakhoda et al.

0.50

0.75

1.00

0.50

0.75

1.00

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

 L
ev

el
 T

hr
ou

gh
pu

t/C
os

t

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

Le

ve
l T

hr
ou

gh
pu

t

Bandwidth Limit of Ideal Interconnect
[fraction of off-chip DRAM bandwidth]

Application Level Throughput
Application Level Throughput/Cost

Bisection bandwidth
of baseline mesh

Fig. 7. Limit study showing bisection bandwidth of a mesh with 16B channel size can achieve 91%
application-level throughput (IPC) of a network with infinite bandwidth while maximizing application-level
throughput per unit estimated area cost.

cache line so that only one request is made per cache block miss. In line with recent
multicore architectures such as Sun Niagara [Kongetira et al. 2005] and as suggested
by an NVIDIA patent application [Nickolls et al. 2011], we place shared L2 cache banks
adjacent to the MCs. Applications also employ a software-managed scratchpad memory
or “shared memory” (S) in NVIDIA’s terminology. Addresses are low-order interleaved
among MCs every 256 bytes [Harris 2009] to reduce the likelihood of any single MC
becoming a hotspot [Pfister and Norton 1985].

3. CHARACTERIZATION

In this section we analyze characteristics of BSP applications written in CUDA on
the baseline architecture described in Section 2 using closed-loop execution-driven
simulations (see Section 5.1 for configuration details). We start by identifying the
bisection bandwidth required to achieve a balanced NoC design when considering the
heavy off-chip demands of accelerator workloads. Then, we classify our applications
by the intensity of on-chip traffic they generate and their application-level throughput
sensitivity to NoC optimizations.

3.1. Balanced Design

We first size the bisection bandwidth of our network with the aim of finding a balanced
design. Bisection bandwidth is a key parameter limiting network throughput. It is
defined as the minimum bandwidth over all cuts that partition the network with
equal number of nodes in each half [Dally and Towles 2004]. Starting from an on-chip
network with bisection bandwidth that is “too low” may significantly limit application
throughput for memory bound applications (which should instead be limited by off-chip
bandwidth) while an on-chip network with bisection bandwidth that is “too high” may
waste area.

Figure 7 plots two curves: One curve (square markers) is the harmonic mean through-
put (IPC) of our benchmarks assuming realistic timing models for compute nodes and
memory nodes, but a zero-latency network with limited aggregate bandwidth. This net-
work has zero latency once a flit is accepted, but it limits the number of flits accepted
per cycle by enforcing the bandwidth limit specified on the x-axis. Here, bandwidth
is total flits transmitted across the network, expressed as a fraction of peak DRAM
bandwidth. A packet is accepted provided the bandwidth limit has not been exceeded.
Multiple sources can transmit to a destination in one cycle and a source can send
multiple flits in one cycle. Application-level throughput is normalized to that obtained
with an infinite-bandwidth zero-latency network. The slight improvements beyond the
point where bisection bandwidth is equal to DRAM bandwidth (1.0 on x-axis) is due to
the presence of L2 caches.

The other curve (diamond markers) shows this throughput divided by an estimated
chip area. Chip area here includes compute node area and NoC area. NoC area is

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:7

0%
50%

100%
150%
200%
250%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS HM

Sp
ee

du
p

Fig. 8. Speedup of an ideal NoC over baseline. LL, LH, HH: First character denotes low or high speedup with
ideal NoC; second character denotes low or high memory demand. HM is harmonic mean of all benchmarks.

estimated to be proportional to the square of the channel bandwidth [Balfour and
Dally 2006]. Although higher network bandwidth continues to increase the perfor-
mance, when normalized to cost, an optimal design from a performance per area
perspective occurs at around bisection bandwidth ratio of 0.7–0.8. In addition, since
performance is generally limited by off-chip bandwidth due to a lack of locality in
the workloads and considering the activate/precharge overheads of switching DRAM
pages, a network bandwidth with 70–80% of the peak off-chip DRAM bandwidth also
provides a balanced network design. Based on this bisection bandwidth ratio, we de-
termine that this ratio approximately corresponds to a 2D mesh network with 16-byte
channels.3

Note, the resulting balanced channel bandwidth depends on the ratio of NoC area to
the rest of the chip. If the ratio of NoC goes down the maximum point of throughput/cost
curve (diamond markers) moves to the right and the curve becomes more flat. For
example, if we assume that NoC is 3× smaller than our estimated area, the maximum
will occur around the 1.2 mark on x-axis which corresponds to a network with 24-byte
channels. While starting from a different baseline bandwidth would change the raw
numbers in the rest of the article, it would not affect the trends.

3.2. Network Limit Study

Next we perform a limit study to measure the performance benefits of an ideal NoC
(zero latency and infinite bandwidth) versus our baseline mesh with 16B channel size.
This gives us an upper bound for application-level throughput improvements that are
possible by optimizing NoC. Figure 8 shows the speedup of an ideal network over the
mesh with 16B channel bandwidth, a 4-stage router pipeline, and a 1-cycle channel
delay (5-cycle per hop delay) with the parameters shown in Table IV.

We divide applications into three groups using a two-letter classification scheme.
The first letter (H or L) denotes high or low (greater or less than 30%) speedup with
an ideal network. The second letter (H or L) denotes whether the application sends a
heavy or light amount of traffic with an ideal network: accepted traffic, averaged across
all nodes, is greater than or less than 1 Byte/cycle. All of our applications fall into one
of these three groups: LL, LH, and HH. There is no HL group since applications with
low memory access are not likely to get a speedup with a better network. Despite the
mesh having sufficient bisection bandwidth (Figure 7) the average speedup of an ideal
network versus our realistic baseline mesh is 42.3% across all benchmarks, 102.7%
across HH benchmarks, and 44.6% across the Rodinia [Che et al. 2009] benchmarks.
We explore the reasons for this next.

Applications in LL place little demand on the network as a result of low utilization
of the off-chip DRAM. Studying the source code of these applications and their de-
tailed simulation statistics we find several reasons for this: some benchmarks have

3In Figure 7, the network transfers at most N flits/cycle at interconnect clock frequency (iclk). The x-axis in
Figure 7 is x = N [flits/iclk] ·16 [B/flit] ·602 [MHz (iclk)]

1107 [MHz (mclk)] ·8 [# MC] ·16 [B/mclk] where mclk is the DRAM clock frequency. At the marked
location (x = 0.816), N is 12 flits/iclk. Hence, link size is 12 (N) times flit size (16B) divided by 12 (bisection
of a 36-node mesh has 12 links) equals 16B per channel. Clock frequencies are from Table II.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:8 A. Bakhoda et al.

0%
20%
40%
60%
80%

100%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS HM

Fr
ac

tio
n

of

 p
ea

k
IP

C

Ideal NoC Baseline Mesh

Fig. 9. IPC of ideal NoC and baseline NoC shown as a fraction of the peak theoretical IPC of the chip.

0%
20%
40%
60%
80%

100%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS HM

Sp
ee

du
p

1-Cycle Router

2x Bandwidth

Fig. 10. Impact of scaling network bandwidth versus latency. Solid bars: 1-cycle versus 4-cycle router latency,
hashed bars: channel size 32 versus 16.

0.5
0.6
0.7
0.8
0.9

1

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS

N
oC

 L

at
en

cy
 R

at
io

Fig. 11. NoC latency reduction of using 1-cycle routers over baseline 4-cycle routers.

been heavily optimized to group related threads together on a compute node and make
good use of the software-managed scratchpad memory and/or achieve high L1 hit rates.
On the other hand, another set of benchmarks like NE and LU spend the majority of
their runtime running a few threads on each core which cannot fully occupy the mul-
tithreaded pipeline. The LL and HH applications behave as expected: applications that
make low use of memory are expected to have low sensitivity to network performance
and, conversely, for those with heavy traffic one would expect to see high speedups. The
LH group has a moderate memory usage but its performance does not increase much
with an ideal network. Figure 9 shows the IPC of the ideal NoC and baseline mesh
configuration as a fraction of the peak theoretical IPC of the chip. Peak theoretical IPC
is reached when all the SIMD lanes of the chip are executing one instruction per cycle.
All but one of LH benchmarks achieve close to peak performance indicating that the
NoC is not the bottleneck. The exception, NNC, has an insufficient number of threads
to fully occupy the fine-grain multithreaded pipeline or to saturate the memory system.

3.3. Router Latency and Bisection Bandwidth

In this section we show that aggressive router latency optimizations [Peh and Dally
2001; Mullins et al. 2004; Kumar et al. 2007a, 2007b] do not provide significant perfor-
mance benefits for our workloads. Figure 10 shows that replacing the 4-cycle baseline
routers with aggressive 1-cycle routers results in fairly modest speedups ranging from
no speedup to at most 6% (harmonic mean speedup is 1.8% for all benchmarks). Fig-
ure 11 compares the network latency of these two configurations; y-axis is the network
latency reduction of using 1-cycle routers over 4-cycle baseline routers. These figures
show that an aggressive router can decrease network latency but this improvement in
network performance is not enough to translate into noticeable overall performance
benefits for these workloads.4

4Based on our measurements the average hop count is 5.2 in this configuration and average serialization
latency is 2.5 cycles. Reducing the router delay from 4 to 1 cycles should result in a 55% NoC latency

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:9

0
50

100
150
200
250
300

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS

Av
er

ag
e

N
oC

La

te
nc

y

4-Cycle Routers (Baseline) 1-Cycle Routers 2x Bandwidth e Ro

Fig. 12. Impact of scaling network bandwidth and router latency on overall raw NoC latency.

0.1
1

10
100

1000
10000

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS

R
at

io

(lo
g

sc
al

e)

Fig. 13. Ratio of the number of read-request packets to write-request packets sent from compute cores in
logarithmic scale.

Contention in the network prevents the aggressive routers from achieving a latency
reduction comparable to a zero-load network. Even LL benchmarks that have a low
average NoC usage suffer contention because they generate bursty traffic. One example
of this behavior is loading the scratchpad memory from global memory in the beginning
of a kernel and then leaving the NoC unused for the majority of kernel runtime.

In contrast, network bandwidth is an important metric as it impacts the overall
throughput of the network. By increasing the network channel bandwidth by a factor
of 2× (from 16B to 32B), a 28.6% speedup is achieved over the baseline with 16B
channels as shown in Figure 10. However, high-bandwidth NoC designs are very costly
in terms of area as we show in Section 5.9.

To shed more light on this matter, Figure 12 compares the average NoC latencies of
4-cycle router baseline, 1-cycle router, and 2× bandwidth routers. It can be seen that
the latency saved by the 1-cycle routers is only a small fraction of the overall NoC
latency, especially for the HH benchmarks. On the other hand, doubling the bandwidth
has a large and meaningful impact on the latency (e.g., the NoC latency goes down 55%
for STC). The data in Figure 12 is strongly suggestive of an imbalance in the network
resulting in considerable contention. Next, we show that the traffic pattern is one of
the reasons for this imbalance.

3.4. Many-to-Few-to-Many Traffic Pattern

The compute accelerator architectures we study present the network with a many-
to-few-to-many traffic with many compute nodes communicating with a few MCs. As
shown earlier in Figure 1, the MC bottleneck is not only caused by the ratio of many
cores to few MCs (28/8 in our simulations), but also caused by the difference in packet
sizes. As a result, by simulating a closed-loop system with all components modeled,
we also identify how the many-to-few-to-many traffic pattern causes a bottleneck in
addition to the bottleneck caused by the many-to-few pattern. The traffic sent from
compute cores to MCs consists of either read requests (small 8-byte packets) or, less
frequently, write requests (large 64-byte packets) while the traffic from MCs to compute
cores only consists of read replies (large 64-byte packets). This creates an imbalance in
injection rates. To better demonstrate the differences in the number of read and write
requests, Figure 13 shows the ratio of the number of read-request packets to the number
of write-request packets that are sent from compute cores for all the benchmarks.

reduction, that is, 0.45 in Figure 11. Note that the link latency is always 1 and serialization latency is not
changing so the minimum possible latency reduction ratio is 0.4.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:10 A. Bakhoda et al.

0
5

10
15
20
25
30

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS

B
yt

es
 p

er
 N

oC

 C
yc

le
 p

er
 n

od
e

 Compute node avg. injection rate MC node avg. injection rate

Fig. 14. Average injection rates of compute nodes compared to MC nodes in term of bytes per network cycle
per node. NoC is ideal (infinite BW and zero latency).

0%
50%

100%
150%
200%
250%

0.01 0.1 1 10 100

Id
ea

l N
oC

 S

pe
ed

up

Memory Injection Rate of Ideal NoC in Bytes/cycle/node (log scale)

Fig. 15. Ideal NoC speedup versus memory node injection rate.

0%
25%
50%
75%

100%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS

%
 s

ta
lle

d

Fig. 16. Fraction of time injection port at MCs are blocked preventing data read out of DRAM from returning
to compute nodes.

Figure 14 compares the average injection rates of compute nodes and MC nodes for
all the benchmarks. For this figure NoC is assumed to be ideal to better demonstrate
the traffic demand that the NoC is expected to handle. This figure demonstrates the
bottleneck caused by the few-to-many component of the many-to-few-to-many traffic
pattern, especially for the HH benchmarks.

Figure 15 plots ideal network speedup versus average memory controller node in-
jection rate. Speedups are correlated to the memory controller injection rate (or the
MC output bandwidth shown in Figure 1) with a correlation coefficient of 0.926. This
suggests the presence of a bottleneck on the read response path.

The higher injection rates of memory response data returning from the MCs create
bottlenecks in the reply network that can stall the MCs. This issue is depicted in
Figure 16 which shows the fraction of the time MCs are stalled (i.e., cannot process
requests) because the network cannot accept packets from MCs, resulting in MCs being
stalled up to 73% of the time for some of the HH benchmarks. We address this issue in
Section 4.3.

4. THROUGHPUT-EFFECTIVE NETWORK DESIGN

In this section we leverage the insights from the analysis in Section 3 to design
throughput-effective NoCs for compute accelerators. As shown in Figure 3, throughput-
effective designs can be achieved by either increasing the application-level performance
or decreasing the area footprint of system components. We introduce techniques that
utilize both of these strategies. We describe the checkerboard network organization
which uses half routers to reduce network cost while exploiting the many-to-few traffic
pattern characteristics. In addition, it also enables a staggered MC placement to avoid
creating hotspots. To address the many-to-few traffic imbalance, we describe a simple
yet effective router microarchitectural extension to the checkerboard network with mul-
tiport routers at the few nodes that increases the terminal bandwidth of these nodes.
We also extend the checkerboard network with channel slicing to create two parallel

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:11

(a) General restrictions (b) Case 1: YX routing

(c) Case 2: Checkerboard
routing

(d) Case 3: YX routing

Compute Core
Router

Full Router

Half Router

Memory Controller
Router

Fig. 17. Checkerboard mesh on-chip network routing examples. Dashed lines are examples of XY routes
prevented by half routers (hatched); alternate feasible routes are solid. Dark shaded nodes are MC routers.

networks and further reduce area. Finally we demonstrate how the benefits of these
techniques can be realized in a double checkerboard inverted network organization.

4.1. Checkerboard Network Organization

Although the many-to-few traffic pattern creates challenges, it also provides opportuni-
ties for optimization—for example, there is no all-to-all communication among all nodes
in the system. Based on this observation, we propose a checkerboard NoC to exploit this
traffic pattern and reduce the area of the NoC. Figure 17 shows a 6×6 configuration
of the checkerboard network where routers alternate between full routers shown with
solid shaded squares and half routers drawn with hatching. A full router provides full
connectivity between all five ports in a 2D mesh while a half router (shown in detail
in Figure 18) limits the connectivity as packets cannot change dimensions within the
router. The router microarchitecture is similar to a dimension-sliced microarchitec-
ture [Kessler and Schwarzmeier 1993] but in a dimension-sliced router, packets can
change dimensions while we limit this capability to further reduce the complexity of
the router. While the injection port and the ejection port of a half router are connected
to all ports, the East port only has a connection to the West port and similarly, the
North port is connected only to the South port. By taking advantage of half routers,
the router area can be significantly reduced. For example, in a full router, the crossbar
requires a 5×5 crossbar5 while the half router only requires four 2×1 muxes (two for
each dimension) and one 4×1 mux for the ejection port, resulting in approximately 40%
reduction in area (detailed analysis in Section 5.9).

The checkerboard layout does present some limitations in terms of communication
(and routing) because of the limited connectivity of the half routers. Regardless of

5Since a packet arriving on a given port cannot depart through the same port, the crossbar will actually be
a 4×5 crossbar.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:12 A. Bakhoda et al.

Ejection

Injection

North

South

EastWest

Fig. 18. Half-router connectivity.

the routing algorithm (minimal, adaptive, or nonminimal), a packet with a full-router
source and a full-router destination that are an odd number of columns or rows away
cannot be routed, as illustrated in Figure 17(a), since the packet cannot turn at a
half router. However, by exploiting the many-to-few traffic pattern, the communication
between fullrouters can be removed by placing the MC nodes at half routers. Thus, all
full routers represent a compute node and this routing limitation of the checkerboard
layout does not become a problem for these throughput accelerator architectures. In
addition, as the data in Section 3.4 suggests, an injection rate imbalance between MCs
and compute cores creates hotspots in the baseline network in which the MCs are
placed in neighboring locations on top and bottom of the chip. Thus, the checkerboard
network can also exploit a staggered MC placement [Bakhoda et al. 2009; Abts et al.
2009]. Similarly, in architectures with large last-level on-chip caches, if the cache banks
are restricted to nodes with half routers they can be accessed by all compute nodes.
Miss traffic at these banks can reach MC nodes from the cache banks, provided both
cache banks and MCs are also placed at half-router nodes, since half routers can always
route to other half routers (as described shortly).

However, if cache banks are placed on the same tiles as the compute cores, the
checkerboard organization will restrict cache-to-cache communication as full routers
cannot communicate with all other full routers. In this case packets would need to
be routed to an intermediate half router (either minimally or nonminimally) and be
ejected or removed from the network—before being reinjected into the network and
being routed to their destination, thus doubling the network load6. However, prior work
has shown that for accelerator applications written in BSP-style languages supporting
coherence, cache-to-cache communication is relatively infrequent [Kelm et al. 2010a],
and hence we expect the impact of this routing on overall performance to be minimal.
In addition, in Section 4.5 we will illustrate a novel extension of checkerboard routing
that completely eliminates this limitation.

4.2. Checkerboard Routing Algorithm and Flow Control

We assume a baseline Dimension-Ordered Routing (DOR) using XY routing in the
proposed checkerboard network. However, because of the limited connections of the
half routers, XY routing cannot route a packet for the following three traffic patterns.

Case 1. It won’t route a packet in routing from a full router to a half router which is
an odd number of columns away and not in the same row.

6This is different from randomized routing algorithms such as Valiant routing [Valiant and Brebner 1981]
where packets are routed to an intermediate node but packets do not need to be removed from the network
at the intermediate node.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:13

FF
HF

1.053 0.847

0.95

H F
0.95

FF

2

2

1.9

1.9

Fig. 19. Layout example. Normal (left): F=full router; Checkerboard (right): H=half router, F=full router.
Area savings of 10% with two tile layouts assuming (for illustration only) a 75% reduction in half-router
area and full routers occupy 25% of a normal tile.

Case 2. It won’t route a packet in routing from a half router to a half router which is
an even number of columns away and not in the same row.

Case 3. It won’t route a packet in routing from a half router to a full router which is
an even number of columns away and not in the same row.

If YX routing is used as the baseline routing algorithm, similar routing restrictions
exist as well. For Case 1, since a packet cannot “turn” or change dimensions at a half
router, YX routing can be used instead of XY routing and thus, the packet turns at a
full router as shown in Figure 17(b). For Case 2, neither XY nor YX routing can be used
to route packets because of the limitations of half routers (Figure 17(c)). As a result,
an additional turn is needed to route the packet from the source to its destination by
first routing to an intermediate, full-router node and then routing to the destination. A
random, intermediate full router is selected within the minimum quadrant containing
the source and destination that does not share the same row as the source and is not
an odd number of columns away from the source. Thus, Checkerboard Routing (CR)
occurs in two phases—in the first phase, YX routing is used to route to the intermediate
node and in the second phase, XY routing is used to route minimally to the destination.
The CR routing is similar to a 2-phase ROMM routing [Nesson and Johnsson 1995]
discussed in Section 7 but differs as the random intermediate node is restricted to a
full router and each phase needs to be done with a different DOR routing.

Case 3 can be handled either like Case 1 or like Case 2. In Section 5 we will show that
handling Case 3 like Case 1 using YX routing yields higher average application-level
throughput. Figure 17(d) shows an example of Case 3 being handled like Case 1.

To avoid circular dependencies and routing deadlock, two virtual channels are needed
in the checkerboard routing, similar to O1Turn routing algorithm [Seo et al. 2005]. The
YX routing is done using one VC while XY routing uses another VC. Additional VCs to
avoid protocol deadlock are still needed. Although the checkerboard network requires
additional VCs, the reduction in router area is substantial as shown in Section 5.9.

Reducing overall chip area with this design may require layout modifications like
those illustrated in Figure 19. This figure assumes for illustration and clarity purposes
a 75% reduction in the area of a half router and a full router that is initially 25% of a
tile leading to a 10% area reduction in chip area.

4.3. Multiport Routers for Memory Controller Nodes

To help reduce the bottleneck at the few nodes with many-to-few-to-many traffic pat-
tern (shown in Figure 1), we propose a simple change to the routers attached to the
few MC nodes: adding additional injection/ejection ports from/to the MC and creat-
ing a multiport router microarchitecture. These additional ports do not increase the
network bisection bandwidth or any network channel bandwidth but instead increase
the terminal bandwidth by providing more injection/ejection bandwidth from/to the

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:14 A. Bakhoda et al.

Memory
Controller Router

West

East

North

SouthEjection

Injection

(a) normal router

West

East

North

SouthEjection

InjectionMemory
Controller Router

(b) with 2 injection/ejection ports

Fig. 20. Router connections assuming a single network.

MC nodes. Figure 20(a) shows connections of a conventional router in a 2D mesh net-
work and Figure 20(b) shows the proposed multiport router microarchitecture with
additional injection/ejection ports. Selection of the ports at multiport routers can be
done in a simple round-robin fashion. The important point is increasing the terminal
bandwidth, and multiport routers are one simple way of achieving this effect.

Note that only the routers connected to the MC nodes change. When adding extra
injection ports, we leverage the fact that an MC is servicing requests from many
compute cores; as packets destined to different compute cores get in the MC router, they
will start traveling in different directions towards their destinations. This technique
would not improve performance if the MC had to service a single compute core for a
long time since we are not increasing the bandwidth of the links between routers.

4.3.1. Smart Injection Port Selection Policy. As mentioned before, selection of injection
ports at multiport routers can be done in a simple round-robin fashion. Round-robin
ensures fair usage of port resources and provides reasonable performance as we will
show in Section 5.4. Nevertheless it is possible to optimize the overall throughput of
the system by designing more intelligent injection mechanisms when there is a choice.
The underlying mechanism that improves the performance for multiport injection is
that as packets reach the router they start bidding for different outgoing ports and
therefore get through the router at the same time. We designed a smart port selection
mechanism that tries to boost this effect and therefore increase the number of packets
that start traveling in the network. The smart mechanism can be summarized in the
following steps.

Step 1. Start with a random injection port.
Step 2. If port under consideration is empty then inject to it otherwise use step 3.
Step 3. If the current packet is going to bid for the same output direction as the last
packet injected to this port, then inject to this port.
Step 4. Otherwise, try the next port with criteria in steps 2 and 3, if there is no more
ports left to test, pick the last port under consideration.

The basic idea is to keep the packets that are going to the same output direction
together in the same injection port so that when a packet to a different direction arrives
it goes to another port. Therefore, there is a higher chance that the ports are sending
packets to different directions in parallel. The aforesaid mechanism is applicable to any
number of ports. Implementation for our 2-port setup would require a 2-bit history for
each injection port to remember the output direction of last injected packet. Depending
on timing requirements of hardware implementation the preceding steps can be done
in parallel for all the ports with simple logic.

We also considered other policies such as random port selection or selecting the
port with maximum empty space. Our default round-robin policy and the smart policy
introduced earlier performed better than the other policies we tried. Another policy
that performed particularly poorly was similar to the smart method mentioned before
except for step 3 where it would inject to the port under consideration if the current

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:15

packet was going to bid for a different output direction as the last packet injected to
that port. This is essentially the opposite of the smart policy and would distribute
packets going to the same output into different ports.

4.4. Double Network—Channel-Sliced Network

The area footprint of NoC can be further reduced using channel slicing. For a network
with a given bisection bandwidth with each channel having a bandwidth b, our baseline
uses a single physical network. However, since router area is proportional to O(b2),
it can be reduced by taking advantage of channel slicing [Dally and Towles 2004]:
creating a double network7, each with a channel bandwidth of b/2. Our channel-slicing
technique increases the serialization latency of large packets (write requests and read
replies) but as we showed earlier these accelerator architectures are not sensitive to a
slight increase in latency.

The traffic in the double network can be distributed with a dedicated double network
where each network is used for a different class of traffic where one network carries
request packets and the other network carries reply packets, or with a combined double
network where all traffic classes can be sent across either network. With a dedicated
double network, no extra Virtual Channel (VC) is needed to avoid protocol deadlock
while with either a combined double network or a single network, VCs are needed for
protocol deadlock avoidance. On the other hand, a dedicated double network essentially
cuts the terminal bandwidth of all the nodes to half. A combined double network
maintains the terminal bandwidth of all the the nodes and can better load-balance
the network traffic since a packet can utilize either network. It will also increase the
area footprint of routers by doubling the number of VCs required. A combined double
network with checkerboard routing requires four VCs in each network while a dedicated
double network would require only two VCs per network. Later in Section 4.5 we will
demonstrate how we can keep the number of VCs the same as a dedicated double
network while load-balancing the traffic like a combined double network. Note that
channel slicing is orthogonal to checkerboard routing.

4.5. Double Checkerboard Inverted Network Organization (DCI)

The double network organization (Section 4.4) can reduce the NoC area compared with
a single network and enables new optimization opportunities to remove the limitations
of checkerboard networks. In this section we introduce a double network organization
based on the checkerboard network that we refer to as Double Checkerboard Inverted
(DCI).8

The double checkerboard network can be created by two checkerboard subnetworks.
However, the DCI differs from the double checkerboard as we exploit an inverted
checkerboard where the location of the full and half routers is inverted, compared with
a normal checkerboard network. Thus, one of the subnetworks in DCI is a checkerboard
network while the other subnetwork is an inverted checkerboard network—resulting
in all nodes (both compute or MC nodes) to be connected to both a full router and a
half router as shown in Figure 21. This form of double network organization removes
all the limitations of a checkerboard design as it allows all the nodes to communicate
directly with all other nodes. The routing algorithm is also simplified as DOR routing
can be used without having to switch routing at an intermediate node (Section 4.2).

7Balfour and Dally [2006] proposed MeshX2 topology which doubles the networks and thus, doubles the
bisection bandwidth and increases cost. Our approach differs slightly as we partition the network, thus
comparing networks with same bisection bandwidth.
8DCI does not necessarily fit into the description of dedicated or combined terminology that we used earlier
in Section 4.4. It has similarities and differences with both of these networks that we will explain in this
section.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:16 A. Bakhoda et al.

W

E

N

S

Memory
Controller

or
Compute

Node

Full
Router

W

E

N

S

Half
Router

Fig. 21. The connections between a node and routers
are shown for one tile in the DCI network organization.
Sizes are not to scale.

2

2 FH

FH

F H

F H

Fig. 22. Layout example showing four tiles for
DCI. H=half router, F=full router.

(a) Subnetwork 0 (b) Subnetwork 1

Compute Core
Router

Full Router

Half Router

Memory Controller
Router

Fig. 23. DCI routing examples. The two physical subnetworks are shown separately for clarity. Solid lines
show examples of selecting full routers for injection while dashed lines show examples of selecting half
routers. Dark shaded nodes are MC routers.

Subnetwork selection policy. To leverage a simple XY DOR routing, the following
injection rules must be followed.

Rule (1). If the destination node is an even number of columns away from the source
node then inject the packet to the full router attached to the source node.

Rule (2). If the destination node is an odd number of columns away from the source
node then inject the packet to the half router attached to the source node.

Following this injection policy, all instances of special Cases 1–3 of checkerboard
routing, mentioned in Section 4.2, are removed and there is no need for any packet to
turn at a half router. Figure 23 shows some examples of DCI routing. Solid lines in
Figure 23 are examples of selecting full routers for injection while dashed lines show
examples of selecting half routers for injection.

Each subnetwork in DCI requires a minimum of two VCs for protocol deadlock
avoidance—one VC for request packets and one VC for reply packets. DCI utilizes both
subnetworks for both memory request and reply packets similar to a combined double
network while it can keep the number of VCs the same as a dedicated double checker-
board network (combined and dedicated networks were described in Section 4.4).

As Figure 21 shows DCI provides two injection and ejection ports at each node
while the routers themselves only have one injection and one ejection port. Since the
subnetworks are formed using channel slicing the terminal bandwidth of DCI is the
same as a single network and a combined double network. Achieving a similar effect
with a dedicated double checkerboard network would require multiport routers.

Another benefit of DCI is that it allows for a more regular tile design since all the
nodes now have both a full and a half router as demonstrated in Figure 22.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:17

4.6. Augmenting DCI with Advanced Routing Techniques

A further advantage of the DCI design is that it can be extended to work with routing
techniques that are more sophisticated than DOR. For example, O1turn routing [Seo
et al. 2005] can be used with DCI by adding an extra set of virtual channels. DCI can
also be used with “Class-based Deterministic Routing” (CDR) [Abts et al. 2009]. In
CDR routing request packets are routed using XY routing and reply packets are routed
using YX routing. As observed by Abts et al. [2009] CDR routing is useful in the cases
with a peripheral row-based MC placement like our baseline in Figure 4. Utilizing YX
routing for the reply packets reduces their contention as they leave the MCs when MCs
are placed in neighboring locations in a row.

We now describe an extension to the DCI subnetwork selection policy that enables
CDR without requiring any extra VCs. To use DCI with CDR the compute cores that
send request packets and use XY routing employ the injection rules (1) and (2) of
Section 4.5 and MC nodes that send reply packets and use YX routing employ the rules
(1′) and (2′) described next.

Rule (1′). If the destination node is an even number of rows away from the source
node then inject the packet to the full router attached to the source node.

Rule (2′). If the destination node is an odd number of rows away from the source node
then inject the packet to the half router attached to the source node.

Using this technique, no packet will need to turn at any half router and no change to
the CDR technique is necessary once a packet is injected into the network. Note that
each subnetwork requires only one VC dedicated to XY routing for the request packets
and one VC dedicated to YX routing for the reply packets. Routing deadlock does not
happen because each packet only turns once, and protocol deadlock does not happen
since request and reply packets have dedicated VCs.

4.6.1. DCI Enhanced (DCIE)—Increasing Network Utilization for DCI. If both the source and
destination of a packet are on the same row/column then the packet does not need to
turn. Such a packet can use either of the subnetworks in DCI as it will never turn
and therefore it does not have to comply with the subnetwork selection rules of DCI.
We can take advantage of this observation by choosing the injection subnetwork in a
manner that improves overall network utilization. When the nonturning packets are
being injected, we select the subnetwork that has been least utilized recently. To keep
the mechanism simple we limit our selection mechanism to local subnetwork selection
history. There are numerous implementation possibilities; we chose to employ an up-
down counter that counts up when a packet is injected to subnetwork 1 and counts
down when a packet is injected to subnetwork 0. When the injection mechanism faces
a nonturning packet it decides where to inject it based on the counter value, for example,
if counter value is positive the packet is injected to subnetwork 0. This is just a simple
way of approximating the load of each subnetwork, where the goal is to take advantage
of nonturning packets to increase the utilization of the DCI network. We will refer to
this technique as DCI Enhanced or DCIE.

5. EXPERIMENTAL RESULTS

In this section we present experimental results for our throughput-effective NoC op-
timizations. We start by describing our simulation setup, then explore the impact of
checker MC placement, the impact of checkerboard routing, the impact of multiport
routers at the MC nodes, and the impact of channel slicing. Next we evaluate the im-
pact of the DCI network and then show the effects of various MC placements on the
aforementioned techniques accompanied by a discussion of implementation trade-offs

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:18 A. Bakhoda et al.

Table II. Simulation Parameters

Parameter Value

of Compute Cores 28
of Memory Channels 8
MSHRs/Core 64
Warp Size 32
SIMD Pipeline Width 8
Number of Threads/Core 1024
Number of CTAs/Core 8
Number of Registers/Core 16384
Shared Memory/Core 16KB
Constant Cache Size/Core 8KB
Texture Cache Size/Core 8KB
L1 Cache Size/Core 16KB
L2 Cache Size/MC 128KB
Compute Core Clock 1296 MHz
NoC & L2 Clock 602 MHz
Memory Clock 1107 MHz
GDDR3 Memory Timing tCL = 9, tRP = 13, tRC = 34

tRAS = 21, tRC D = 12, tRRD = 8
Peak DRAM Bandwidth 141.7 (GB/sec)
DRAM request queue size 32
Memory Scheduling Policy out of order (FR-FCFS)

[Rixner et al. 2000]
Branch Divergence Method Immediate Post

Dominator [Fung et al. 2007]
Warp Scheduling Policy Round Robin among ready warps

Table III. Area Estimation
Configuration

Technology 65nm
Crossbar type Matrix
Buffer Type SRAM
Wire Layer Intermediate
Wire Spacing Single

Table IV. Baseline NoC Configuration

Topology 2D Mesh
Routing Algorithm DOR
Routing Latency
(number of router
pipeline stages)

4

Channel Latency 1
Flow Control Virtual Channel

based on Wormhole
Virtual Channels 2
Buffers per VC 8
Allocator iSLIP
Input Speedup 1
Channel width
(Flit size)

16 bytes

Read request
packet size

8 bytes

Read reply packet
size

64 bytes

Write packet size 64+8 bytes

of MC placements. We also evaluate some of our techniques in an open-loop simula-
tion setup and present the area analysis of our techniques. Finally, we discuss the
throughput effectiveness of our techniques.

5.1. Methodology

We use a modified version of GPGPU-Sim [Bakhoda et al. 2009], a detailed cycle-level
simulator modeling a contemporary GPU running compute accelerator workloads. The
modifications we made include adding support for a limited number of MSHRs per core,
proper modeling of memory coalescing according to the CUDA manual [NVIDIA 2010],
using Booksim 2.0 [Jiang et al. 2013] instead of Booksim 1.0, and adding support for
some undocumented (by NVIDIA) barrier synchronization behavior required by LE and
SS benchmarks (barriers synchronize at the level of warps rather than scalar threads in
NVIDIA GPUs [Wong et al. 2010]). All these changes except the migration from Book-
sim 1.0 to Booksim 2.0 are currently publicly available as GPGPU-Sim version 2.1.2b.9

Table II and IV show our hardware parameters.10 Configuration abbreviations are
listed in Table V. While we are interested in future designs, we chose parameters

9The current version of GPGPU-Sim also includes a more realistic model for texture caches that was not
present in our previous work [Bakhoda et al. 2010]. This new model slightly changes the simulation results
of benchmarks like MUM and DG that use texture caches. We also model a smaller number of entries for the
buffers that connect L2 caches to the routers and DRAM controllers (8 entries for the buffers from router
towards DRAM controller and 6 entries for the buffers in the other direction). In our previous work all
these entries were set to 32. We believe the new settings are more realistic. This change results in an HM
slowdown of 0.5% across all benchmarks for the baseline configuration and also slightly reduces the speedup
of multiple ejection ports at MC routers.
10In our previous work [Bakhoda et al. 2010], we modeled half routers with a 3-stage pipeline though we
found the performance impact of one less stage was negligible. In this work half routers have the same
number of pipeline stages as full routers (4-stage).

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:19

Table V. Abbreviations

BW Bandwidth
DOR Dimension Order Routing
CDR Class-based Deterministic Routing
CP Checkerboard Placement
CR Checkerboard Routing
TB baseline Top-Bottom placement
2P 2 injection/ejection Port routers at MCs
DCI Double Checkerboard Inverted
DCIE DCI Enhanced

-20%
0%

20%
40%
60%
80%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS HM

Sp
ee

du
p

Fig. 24. Overall speedup of using checkerboard placement (CP) of routers compared to baseline top-bottom
(TB) placement (both configuration have 2 VCs).

similar to GeForce GTX 280 except for the addition of caches which more closely repre-
sent per-thread resources on Fermi.11 We do this to aid in estimating area overheads
of compute portions of the overall accelerator. We use a modified version of Orion
2.0 [Kahng et al. 2009] for network area estimation; Table III shows the corresponding
configuration options. Area estimation is explained in more detail in Section 5.9. The
benchmarks used in simulation are listed in Table I12. We simulate all benchmarks to
completion to capture distinct phases of the benchmarks.

5.2. Checkerboard Placement (CP)

Figure 24 shows the performance impact of moving the MC nodes from the top-bottom
configuration in Figure 4 to the staggered locations shown in Figure 17, while still
maintaining full routers and DOR routing. This placement of the MCs benefits from
less contention [Abts et al. 2009] and by itself results in an average speedup of 13.2%
compared to baseline top-bottom placement.13 We chose this particular placement by
picking the best performing placement after simulating several valid checkerboard
placements (but did not exhaustively simulate all valid placements). We will revisit
the effect of MC placement in more detail in Section 5.7.

For applications with low injection rates at the MC nodes (such as LL and LH appli-
cations), the MC placement has little or no impact on overall performance since the
contention in the return network is not high. Note that WP’s loss of performance (5.2%)
is due to fairness issues that slow down a few of the compute cores. There are stud-
ies [Lee et al. 2008, 2010] that tackle the global fairness in NoCs which are orthogonal
to the techniques we introduce in this article.

5.3. Checkerboard Routing (CR)

As described in Section 4.2 Checkerboard Routing (CR) requires an extra set of virtual
channels to avoid deadlock. Therefore, we also simulate a configuration with 4 VCs

11Compute core caches are shared by all threads running on that compute core.
12In our previous work [Bakhoda et al. 2010] we used the original CUDA SDK versions of RD and BIN
benchmarks. We have upgraded them to their newer 2.3 versions in this work.
13Although Abts et al. [2009] showed the network performance improvement of better MC placement, they
did not show its impact on overall system performance. Their evaluation was with synthetic traffic patterns
and measured network latency.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:20 A. Bakhoda et al.

70%
80%
90%

100%
110%
120%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS HM

R
el

at
iv

e

Pe
rf

or
m

an
ce

 CP DOR 4VC
CP CR 4VC

Fig. 25. Relative performance (IPC) of DOR with 4 VCs (solid bars) and Checkerboard Routing (CR) with
4 VCs (hashed bars) compared to DOR routing with 2 VCs; all with Checkerboard Placement (CP). Higher
bars mean better performance.

90%
95%

100%
105%
110%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS HM

R
el

at
iv

e

Pe
rf

or
m

an
ce

Fig. 26. Relative performance (IPC) of routing from half routers to full routers that are an even number
of columns away using YX routing compared to routing using YX to an intermediate node and then XY to
destination; both cases are checkerboard routing. Higher bars mean better performance.

and DOR routing to make a fair comparison. Figure 25 shows the relative perfor-
mance of DOR with 4VCs (solid bars) and checkerboard routing with 4VCs (hashed
bars) compared to the DOR routing with 2VCs. These simulations show that using a
checkerboard network, with half of the routers being half routers, results in no sig-
nificant change in performance (on average 0.3% improvement), compared to the 2VC
DOR network which requires all full routers. However, checkerboard results in 4.5%
and 17.7% reductions in total router area compared to 2VC and 4VC DOR networks,
respectively, using area estimations of Section 5.9.14

Although a different routing algorithm is required in the checkerboard network, it is
still minimal routing (minimal hop count between source and destination) and therefore
the checkerboard network has minimal impact on average network latency. Averaged
across all benchmarks, 38.3% of packets in the system will require YX routing—one of
the three cases explained in Section 4.2.

As explained in Section 4.2, the special Case 3 of CR is routed by always taking the
YX route (like Case 1). Figure 26 shows the relative performance of routing Case 3 like
Case 1 using YX routing compared to handling Case 3 like Case 2 which involves YX
routing to an intermediate node and then XY routing to destination.

Although both alternatives employ minimal routing, handling Case 3 only using
YX routing provides a noticeably higher performance for many of HH benchmarks
(maximum speedup of 7.3% for SS). Based on our analysis of channel utilizations, using
YX routing provides better load-balancing. The other alternative puts more pressure
on the routers and links in the center of the chip and increases contention as it involves
routing to an intermediate router in the minimal quadrant.

5.4. Multiport Routers

Figure 27 shows the speedups of increasing terminal bandwidth of MC routers by
adding an extra injection port (3.1%), an extra ejection port (2.2%), and the combina-
tion of these changes (5.2%)—as described in Section 4.3 and Figure 20(b). It can be

14Area reductions are calculated based on total router area numbers in Table VI which are 37.52mm2,
43.95mm2, and 35.83mm2 for 2VC DOR, 4VC DOR, and Checker Routing (CR) respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:21

-10%
0%

10%
20%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS HM

Sp
ee

du
p

2 Injection Ports 2 Ejection Ports 2 Injection and 2 Ejection ports s

Fig. 27. IPC speedup of adding multiport MC routers versus single CP-CR.

seen that the speedups gained by extra injection and ejection ports are orthogonal and
add up when combined. The highest speedups are gained by HH benchmarks (8.1%).
The extra ports at MC routers reduce the average fraction of execution time that the in-
jection ports at MCs are blocked (shown in Figure 16) by 58% which provides additional
performance benefits. The extra terminal bandwidth provided by the extra injection
ports at MCs alleviates the bottleneck at the injection port caused by the many-to-
few-to-many pattern. Since MCs are servicing many compute cores, the packets will
travel in different directions towards their respective destinations after they get in the
network. A scattered MC placement like Figure 17 increases the chances of packets
going to different directions as they get into the network. On the other hand, in the
top-bottom MC placement of Figure 4 a majority of packets that are injected by the MCs
will contend for the east/west ports of MC routers. This is caused by the combination
of XY routing and presence of MC routers at adjacent locations. As a result, increasing
the number of injection ports to two in the top-bottom placement configuration results
in a moderate HM speedup of 2.5% (results not shown). It is important to consider the
interactions of placement and routing mechanism to better take advantage of multiport
MC routers.

Adding extra ejection ports to MC routers is beneficial for benchmarks that have
relatively high average injection rates at compute nodes (see Figure 14 for injection
rates). High injection rates at compute nodes are typically accompanied by higher ratios
of write to read requests (Figure 13). Although processing write requests faster does
not directly translate into higher application-level performance, draining the network
faster allows the read requests waiting behind the write requests to be processed earlier
since the network resources are shared by read and write requests. Some benchmarks
that benefit from extra ejection ports are TRA, LIB, and FWT.

We explained a smart port selection mechanism for multiport injection in
Section 4.3.1. The goal is to keep the packets that are going to the same output di-
rection together in the same injection port so that when a packet headed to a different
direction arrives it goes to another port. This enables packets in different injection
ports to start traversing the router earlier as their output directions are less likely to
conflict with the output of packets in the other injection port. Enabling this techniques
results in modest speedups over the default round-robin network selection mechanism
with an HM average of less than 1% (results not shown). The maximum speedup is for
the RD benchmarks with a 2% improvement. The speedup of smart port selection is
more pronounced in double network designs that we evaluate in the following sections
since it will be applied to more routers.

5.5. Double Network—Channel-Sliced Network

Conventionally, channel slicing is beneficial if combined with a reduction of the network
diameter [Dally and Towles 2004; Kim et al. 2005]; however, we utilize channel slicing
without reducing network diameter to reduce network area (Section 5.9). Overall area is
reduced because the crossbar area has a quadratic dependency on channel bandwidth.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:22 A. Bakhoda et al.

70%
80%
90%

100%
110%
120%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS HM

R
el

at
iv

e
Pe

rf
or

m
an

ce

Fig. 28. Relative performance of using two physical subnetworks (combined double network) with channel
width 8B compared to a single network with channel width 16B (both have checkerboard routing, checker-
board placement, 4 VCs, and 8 buffers per VC).

As described earlier in Section 4, the traffic with a double network can be distributed
either with a dedicated double network or with a combined double network where traffic
can be sent across either network. Unfortunately, using a dedicated network results in a
32% harmonic mean slowdown of the benchmarks since it cuts the terminal bandwidth
of all nodes in half.15

A combined double network is a better choice since it has minimal impact on perfor-
mance while reducing the crossbar area. Figure 28 compares the performance of the
combined double network and the single network. On average, the combined double
network has a 1.2% slowdown while total router area is reduced by 31.81% as we show
in Section 5.9. The overall throughput effectiveness improves by an average of 2.7%.
Note that the aggregate storage used for VC buffers remains constant compared to
a single network as explained shortly. Each subnetwork of the double network has
the same number of VCs as the single network. While the number of VC buffers in
the whole network doubles, each buffer’s storage amount is reduced to half since the
channel width is also halved.

In addition to maintaining the terminal bandwidth, a combined network provides
much better load-balancing of the traffic compared to a dedicated network. A combined
network achieves load-balancing because both request and reply packets use both of the
physical subnetworks. On the other hand, in the dedicated design the link utilization
of the subnetwork dedicated to reply packets is on average 85% more than the link
utilization of the subnetwork dedicated to request packets. This load-imbalance is the
result of relative abundance of read requests compared to write requests as well as the
larger size of read-reply packets compared to read requests.

A fundamental drawback of channel slicing is increased serialization latency for large
packets with narrower channels. This increase in latency only impacts read-reply and
write request packets since the small read request packets still fit in a single flit.
However, as shown earlier in Section 3.3, the additional latency has minimal impact
on most workloads and is well tolerated by the compute cores. There are only a few HH
benchmarks that experience a slight slowdown.

It is possible to further improve the performance of combined double networks by in-
corporating some techniques such as an intelligent subnetwork selector that improves
load-balancing. However we focus our efforts on the DCI network discussed next which
is a more elegant version of double network.

5.6. Double Checkerboard Inverted Network (DCI)

In this section we evaluate the Double Checkerboard Inverted design and its enhanced
version, DCIE, which were introduced in Sections 4.5 and 4.6.1, respectively. DCI is a
double network organization where each compute or MC node has both a full and a half
router. This design allows all nodes to communicate directly with no extra overhead,
and uses a simplified routing algorithm which requires a maximum of one turn in all

15In our previous work [Bakhoda et al. 2010], due to a performance bug in our simulator we did not observe
the performance loss of dedicated double networks and chose them as our preferred type of double networks.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:23

80%
90%

100%
110%
120%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS HM

R
el

at
iv

e
Pe

rf
or

m
an

ce
 DCI DCIE All-Full-Routers

Fig. 29. Relative performance of using “double checkerboard inverted”, its enhanced variant, and a combined
double network that does not have half routers compared to a single network with channel width 16B (all
have checkerboard placement, 4 VCs, and 8 buffers per VC).

Fig. 30. MC placement examples. First two placements keep the MCs on the periphery of the chip while the
next two examples allow MCs inside the chip. All these placements are valid checkerboard placements.

cases as described in Section 4.5. DCIE allows the packets that are never going to turn
to select their injection subnetwork based on the local historical usage of subnetworks.

Figure 29 shows the relative application-level speedup of using DCI and DCIE over
the combined double network design explained in Section 5.5. For comparison, this
figure also shows the speedups of a configuration with equivalent resources except
that it has no half routers (labeled All-Full-Routers). The All-Full-Routers design does
not benefit from the area savings provided by the half router. It does not require any
specific injection rules as opposed to DCI which injects to a certain subnetwork based
on the distance of the destination node’s column. Injection subnetwork is selected
randomly for the All-Full-Routers configuration. As Figure 29 shows the harmonic
mean speedup of All-Full-Routers over the combined double network is 2.9% across
all the benchmarks which is closely followed by the 1.2% speedup of DCIE. DCI has a
modest slowdown of 1.7%. DCIE has a 3.4% higher average link utilization compared
to DCI and 2.6% compared to the double combined network. The HH benchmarks
experience the highest speedups with DCIE as expected. As an example, CFD becomes
8.7% faster.

While it is possible to have DCI and DCIE networks with only two VCs per network,
it is not as throughput effective as using four VCs. For example DCIE with 2 VCs
would increase throughput effectiveness by only 0.6% compared to a combined double
network but at the cost of a 1.7% reduction in performance (results not shown). On
the other hand, using 4 VCs increases both performance and throughput effectiveness.
Therefore, we employ 4 VC DCI and DCIE configurations.

In summary, DCIE improves system-level performance compared to the combined
double network of Section 5.5, has the same NoC area footprint, simplifies the routing
algorithm, and removes the restrictions on the placement of MCs.

5.7. MC Placement Effects

In this section we examine the impact of MC placement on the techniques introduced
before. Figure 30 shows four valid checkerboard placements. As we mentioned in
Section 5.2 we picked the placement shown in Figure 30(b) as the best performing
placement. This placement scatters the MCs throughout the chip and we believe it can
be realized given the current advanced state-of-the-art flip-chip technology. Flip-chip

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:24 A. Bakhoda et al.

0%
3%
6%
9%

12%
15%
18%
21%

Single DOR Single CR Single CR 2P DCIE 2P

H
M

 S
pe

ed
up

ov

er
 B

as
el

in
e PeripheralRow

PeripheralCol

Scattered 1

Scattered 2 (CP)

Fig. 31. Sensitivity of checkerboard routing, two injection port MCs, and double checkerboard inverted
to placements shown in Figure 30. All speedups are measured against harmonic mean IPC of baseline
top-bottom with DOR.

is a technology to connect face-down (flip) electrical components (die) to a package
carrier. Flip-chip utilizes one or more top metal layer(s) called ReDistribution Layer
(RDL) to connect I/O pads on the die to metal bumps on the package carrier. One
possible flip-chip structure is area-I/O where by utilizing RDL the chip designers can
put I/O pads on any arbitrary location on the area of the die [Fang and Chang 2010].
Alternatively peripheral-I/O flip-chip structure restricts the location of I/O pads to the
periphery of the die [Fang and Chang 2010].

Peripheral MC placements such as Figures 30(a) and 30(b) assume peripheral-I/O
while the scattered MC placements such as Figures 30(c) and 30(d) assume area-I/O.
Despite many advantages of area-I/O structures such as shorter wire length and better
signal integrity, they pose a more challenging routing problem in the RDL compared
to peripheral-I/O designs [Fang and Chang 2010]. Nevertheless, we show that the
throughput-effective techniques we introduced can still be applied to peripheral MC
placements.

Figure 31 shows the sensitivity of the throughput-effective techniques discussed in
this article to the placements shown in Figure 30. In this figure, single DOR, single CR
and single CR 2P refer to optimizations presented in Sections 5.2, 5.3, and 5.4 (smart
port selection enabled) respectively. DCIE 2P combines the enhanced version of double
checker inverted presented in Section 5.6 with smart multiport MCs of Section 5.4.
Note that these techniques are orthogonal to each other. That is, each MC is attached
to one half router and one full router in a DCIE 2P configuration and these routers
have two injection and ejection ports. Subnetwork selection and routing inside each
subnetwork is governed by DCIE rules while port selection is governed by the smart
multiport selection policy.

As shown in Figure 31, the scattered placement of Figure 30(d) consistently performs
better than the other placements and when combined with DCIE 2P results in a 19.5%
speedup over baseline TB. Single CR 2P also achieves a similar speedup but at a higher
area cost. (Section 5.10 provides a detailed comparison of these two configurations.)

Among the peripheral placements, the column-based placement of Figure 30(b) out-
performs the row-based placement of Figure 30(a). The PeripheralCol placement com-
bined with DCIE 2P results in a 12% speedup over baseline TB while keeping the MCs
on the periphery. (CDR routing provides better performance if a peripheral MC place-
ment is desired as we will describe later in this section.) The reason that column-based
placements outperform row-based placements is that the large reply packets leaving
the MCs have a higher chance of contention in the row-based versions due to dominance
of XY routing.

The most important factor for the MC placement is to avoid putting the MCs in
neighboring locations when XY routing is employed. When MCs are placed beside each
other the packets leaving the MCs start contending immediately as they leave the MC
nodes. Additionally, the MCs should not be placed on the central nodes in the mesh
because the asymmetrical nature of the mesh increases the traffic passing through

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:25

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

L
at

en
cy

Injection Rate (bytes/cycle/node)

2x-TB-DOR
CP-CR-2P
CP-CR
CP-DOR
TB-DOR

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

L
at

en
cy

Injection Rate (bytes/cycle/node)

2x-TB-DOR
CP-CR-2P
CP-CR
CP-DOR
TB-DOR

Fig. 32. Latency versus offered load for different architectures. All configurations are simulated with 4 VCs
to better distinguish the effects of the techniques introduced in this article. Traffic consists of 90% read
requests and 10% write requests. Read requests and write replies are one flit and read-reply and write
requests are 4 flits except for 2x-TB-DOR where they are 2 flits. Flits are 16 bytes except for 2x-TB-DOR
where they are 32 bytes. The x-axis is the average number of bytes injected from each compute node per
cycle.

the center of the mesh and putting a hotspot node in such a location creates extra
contention.

While we believe a scattered MC placement can be realized in hardware as we ex-
plained in the beginning of this section, if a peripheral placement of MCs is required
then slightly more complex routing techniques such as Class-based Deterministic Rout-
ing (CDR) will provide better performance compared to DOR routing. For example, em-
ploying DCIE 2P in the top-bottom placement of Figure 4 (which is a type of row-based
peripheral placement) results in a 5.1% slowdown over the baseline. When we employ
the CDR variant of DCIE 2P (introduced in Section 4.6) with the same placement, a
13.3% improvement is achieved over the baseline.

CDR performs better than DOR in row-based placements because it employs YX
routing for reply traffic. In XY routing packets ejected from MCs start to contend in
already congested neighboring MC routers. Employing YX routing for reply packets
reduces the amount of contention for the reply packets as they leave the MCs.

As mentioned earlier, when we move MCs apart from each other, contention is re-
duced and performance is increased. That is, if we use DCIE 2P and CDR with the
peripheral row-based placement of Figure 30(a) we will get a 15.4% performance im-
provement over the baseline. This combination (DCIE-CDR-2P with PeripheralRow
placement) is our best performing peripheral configuration.

Similar to observations by Abts et al. [2009] employing CDR with a scattered place-
ment does not result in further improvements in performance (compared to DOR rout-
ing). In our experiments changing DOR routing to CDR routing for the scattered place-
ment of Figure 30(d) using DCIE 2P results in a slowdown of 1.3%.

5.8. Open-Loop NoC Simulation Study

Figure 32 plots open-loop latency versus offered load for the combinations of checker-
board and multiple injection ports evaluated earlier using closed-loop simulation for
both uniform many-to-few and hotspot traffic. For hotspot traffic 20% of requests go to
one MC as opposed to 12.5% (1/8) for uniform random. These open-loop simulations use
a single network with two logical networks for request and reply traffic. Checkerboard
Routing (CR) and DOR have almost the same latency in both traffic patterns as checker-
board routing is minimal. These figures show that combining Checkerboard Placement
(CP), Checkerboard Routing (CR), and two injection ports at the MC (2P) improves per-
formance by increasing saturation throughput versus the top-bottom placement (TB).
The double bandwidth counterpart of baseline (2x-TB) is also shown for reference. The
largest contributors to performance for uniform random traffic are the placement of

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:26 A. Bakhoda et al.

MCs and increasing the number of injection ports at the MCs (note read response pack-
ets are larger than read request packets). For the hotspot traffic the improvements of
MC placement are more moderate. The hotspot node is MC 0 which is located on the
top right corner of the chip in our scattered MC placement. Adding the extra injec-
tion ports at MCs improves performance significantly by alleviating the bottlenecks
created by hotspot traffic. Although addresses are low-order interleaved among MCs
every 256 bytes [Harris 2009] to reduce hotspots we have observed that temporary
hotspots happen in closed-loop simulations.

5.9. Area Analysis

We use a modified version of Orion 2.0 [Kahng et al. 2009] to estimate the area of
buffers, allocators, and links of the various NoC designs we explore in this article.
Recent studies have highlighted the inaccuracies of Orion 2.0 especially for technology
nodes smaller than 65nm [Sun et al. 2012]. Therefore, we calibrate the crossbar area
estimation portion of Orion as described shortly. First we calculate the number of
crosspoints needed to implement the crossbar and then multiply this number by the
area of a single crosspoint. We use an empirical method to estimate the area of the
crosspoint. The number of crosspoints is calculated according to the following formula.

nCrosspoints = nX ∗ nY

nX = nI ∗ CW

nY = nO ∗ CW

CW denotes channel width in bits and nI and nO denote the number of input and
output ports, respectively.

To calculate the area of a single crosspoint we use an empirical model where we
first measure the crosspoint area of three router designs for which we have access
to their crossbar area numbers [Kumar et al. 2007a; Vangal et al. 2008; Salihundam
et al. 2010]. We extract the crossbar area from the provided die photos. The crossbar
in Salihundam et al. [2010] is implemented in 45nm technology. Its area is scaled to
65nm before calculating its crosspoint area. We calculate the crosspoint area as the
average crosspoint area of the three designs mentioned earlier which turns out to be
2.07um2. Unmodified Orion’s crosspoint area is around 4.24um2. That is, our estimation
technique provides crossbar areas that are over 2 times smaller than unmodified Orion.
Table VI provides the area estimates for the designs we evaluated.

The area of non-NoC parts of the chip was estimated by measurements from
GTX280’s die photo. We estimated each compute core to be 5.25mm2 and each MC to
be 10.48mm2. Our baseline of 28 compute nodes and 8 MCs adds up to 230.84mm2. We
also estimated an area of 13.84mm2 for L2 caches using Cacti. As a result the total
area of non-NoC components of our baseline is 244.68mm2. Adding this number to
the estimated NoC area for each network design results in the total chip area (last
column of table). We assume the injection/ejection links have a length of 0.05mm and
include their contribution to area under “Link Area” column. Note that this overhead
is negligible compared to the size of other components as a 64-bit local link would take
around 0.001mm2.

The first row of Table VI shows the area of the baseline mesh with a channel width
of 16 bytes and the second row a mesh with a channel width of 32 bytes. As expected,
a quadratic increase in the router area happens by doubling the channel width. The
high area overhead of the mesh with channel width 32 bytes, which is 40% of chip
area, makes it impractical to build. By exploiting half routers, which occupy only 63%

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:27

Table VI.
Area Estimations (mm2) A “/” separates different router types for configurations that have more than one
router type.

Area of Crossbar Buffer Alloc. Area of Link Router % of NoC Total
1 link Area Area Area 1 Router Area Area Overhead Chip Area

Baseline 0.11 0.87 0.17 0.001 1.04 13.36 37.54 17.2% 295.6
2x-BW 0.219 3.5 0.34 0.001 3.82 26.68 137.56 40.1% 408.9

CP DOR 4VC 0.11 0.87 0.34 0.004 1.22 13.36 43.95 18.8% 301.99
CP-CR 0.11 0.87/ 0.34/ 0.004/ 1.22/ 13.36 35.83 16.7% 293.87

0.42 0.34 0.004 0.76
CP-CR 2P 0.11 0.87/ 0.34/ 0.004/ 1.22/ 13.39 36.8 17.0% 294.88

0.42/ 0.34/ 0.004/ 0.76/

0.42 0.69 0.004 1.12
Double CP-CR 0.055 0.22/ 0.17/ 0.004/ 0.40/ 13.40 24.43 13.39% 282.51
or DCI w/4VC 0.10 0.17 0.004 0.28

DCI 0.055 0.22/ 0.087/ 0.001/ 0.30/ 13.40 17.88 11.34% 275.96
w/2VC 0.10 0.087 0.001 0.19
DCI 2P 0.055 0.22/ 0.087/ 0.001/ 0.30/ 13.43 19.20 11.77% 277.34
w/2VC 0.10/ 0.087/ 0.001/ 0.19/

0.27/ 0.10/ 0.001/ 0.38/

0.17 0.10 0.001 0.28
DCI 2P 0.055 0.22/ 0.17/ 0.004/ 0.39/ 13.43 26.02 13.88% 284.14
w/4VC 0.10/ 0.17/ 0.004/ 0.28/

0.27/ 0.20/ 0.004/ 0.49/

0.17 0.20 0.004 0.38

of the area of a full router16, the checkerboard network results in a 4% reduction in
total router area (comparing sum of router area numbers which are 37.6mm2 in 65nm
for checkerboard and 36.2mm2 for baseline router). By further taking advantage of the
quadratic dependency, the double network reduces the area further by 30% (comparing
sum of router area numbers for combined double checkerboard and single checkerboard
which keeps the buffer sizes constant). The area of DCI with 4 VCs is also the same
as double CP CR network. Table VI’s “DCI 2P w/4VC” row shows the area of the
4 VC DCI configuration with 2 injection/ejection ports at MC nodes; multiport MC
routers increase the NoC area overhead by 4.2%. As the chip scales and the number
of compute nodes increases in the future, the relative overhead of multiport router
decreases because the number of MCs scales at a much slower pace.

DCI needs to determine its injection subnetwork based on the distance to destination
node column. If we assume table-based routing, we need a lookup table with a 1-bit
entry per destination, that is, overhead is a 36-bit lookup table per node. This table can
be further optimized to have 8 entries for the compute nodes and 28 entries for MCs.

5.10. Throughput Effectiveness

Combining the optimizations in Sections 5.2, 5.3, and 5.4 (checkerboard placement,
checkerboard routing, and 2 injection ports at MC routers, i.e., single CP-CR-2P) results
in a 19.6% speedup versus our baseline introduced in Section 2 as shown in Figure 33.
Compared with 42.3% speedup of an ideal network, this throughput effective network

16The half-router crossbar area is calculated by adding the area of four 2×1 crossbars (two for each dimension)
and one 4×1 crossbar for the ejection port. Full-router crossbars are modeled as a single 5×5 crossbar which
is pessimistic since a packet arriving on a given port cannot depart through the same port.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:28 A. Bakhoda et al.

-40%
0%

40%
80%

120%

 YAR SPL MM KLB CNN NOC PB ALS UL SIH EL WH LDN EN PSH NIB SEA DG TRA SR WP MUM LIB FWT SCP KM STC RD SS CFD BFS HM

Sp
ee

du
p

Single-CR-2P CP DCIE-CDR-2P PeripherialRow placement DCIE-DOR-2P CP ow

Fig. 33. IPC speedup of three throughput-effective designs over baseline top-bottom with DOR.

achieves 47% of the performance possible with an ideal network while reducing area.
This design improves throughput effectiveness (IPC/mm2) by 19.9% (using the area
numbers in baseline and CP-CR 2p rows of Table VI). The majority of the gain in
throughput effectiveness is the result of increased performance rather than reduced
area.

Utilizing channel slicing and the simpler routing of the DCIE technique evaluated
in Section 5.6 along with the preceding techniques results in a 19.5% speedup over
the baseline while reducing the area compared to a single CP-CR-2P configuration. The
speedups over baseline are shown as DCIE-DOR in Figure 33. This design offers the
best trade-off of performance and area among the combinations of proposed techniques
and results in a 24.3% improvement in throughput effectiveness (IPC/mm2). It was
shown as “Thr. Eff.” point in Figure 2.

If a peripheral placement is desired then CDR routing can be employed. Using CDR
routing with the PeripheralRow-based MC placement of Figure 30(a) results in a 15.4%
speedup over baseline without changing the area footprint of DCIE. The speedups of
this design can be seen as DCIE-CDR bars in Figure 33. Using this technique improves
throughput effectiveness (IPC/mm2) by 20.0%.

6. DISCUSSION

In this section, we discuss interactions of concentration with our proposed techniques
and provide comparisons with other topologies. We also discuss scalability and power
issues. In this section, references to a “throughput-effective” design refer to a DCIE
2P network with scattered placement of MCs similar to Figure 30(d) and 2 VCs per
subnetwork.17

6.1. Concentration

Concentration is a form of “hierarchical” network with the first level of the network
hierarchy being the “concentration” or a simple multiplexor (the actual implementation
can vary). The techniques provided in this work are orthogonal to concentration. Our
techniques are suited for cases with many compute nodes and few MCs. We expect the
many-to-few-to-many property to be true regardless of compute node concentration.
Given the slow rate of increase in the number of pins per chip [ITRS 2008] the number
of MCs will remain at their current level well into the future.

Concentration has been proposed for NoCs in the form of high-radix routers like
CMesh and flattened butterfly [Balfour and Dally 2006; Kim et al. 2007]. We refer to this
form of concentration as integrated concentration and will discuss it in Section 6.2. An
alternative implementation would be applying concentration to multiple input sources
first (i.e., external concentration [Kumar et al. 2009]) and then feeding the router only
with a single port. In this approach the router radix is the same as the case without
concentration. We refer to this form of concentration as external concentration.

17In Section 5.6 we mentioned having a DCIE with 4 VCs is more throughput effective than having 2 VCs.
The studies of this section were performed before we came to that conclusion and assume 2 VCs.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:29

Current GPUs seem to be employing a combination of external concentration and
crossbars. We now provide a comparison of this approach with mesh-based topologies
and the reasons it needs to change in the future. As mentioned earlier, a crossbar would
be connecting components that are scattered throughout the chip. Routing very long
wires to and from a central crossbar is neither easy nor inexpensive. We simulated an
asymmetric crossbar NoC with a 10 × 8 router for requests and an 8 × 10 router for
replies and external concentration of 3 for the compute nodes. If we assume a flit size
of 16 bytes, the overall HM IPC is 1.1% better than our baseline while the estimated
NoC area is around a quarter of the baseline. We are not including the links in area
comparison for simplicity. It is clear that an asymmetric crossbar is better in terms of
throughput effectiveness compared to baseline. On the other hand, in order to achieve
a performance similar to our best throughput-effective design we need to increase the
flit size of the asymmetric crossbar to 24 bytes. At this point the crossbar has an HM
IPC of 2% more than our DCIE 2P design while its total NoC area is 12% smaller.

Nevertheless as the number of nodes and bandwidth demand grows in the future
the crossbar will lose its advantage as its complexity goes up with the number of
ports and flit size requirements. Routing long links to connect to a central crossbar
becomes problematic and will require multiple cycles. A large crossbar also becomes
a single point of failure bringing down yield. On the other hand, if a mesh is faulty
the chip can still be sold after disabling some rows and/or columns. A mesh would
provide low area, good performance, and regularity in design and high yields. Another
consideration is that our mesh-based DCI technique can be easily extended to support
coherence in a system like Intel’s Knights Corner [Seiler et al. 2008] by adding virtual
channels. However, asymmetric crossbars cannot support coherence protocols that
require compute nodes to communicate directly; coherence would require a fully
connected symmetric central crossbar in such a case. Note that all the nodes connected
to a symmetric crossbar can directly send packets to each other while an asymmetric
crossbar only allows the nodes on opposing sides of the crossbar to communicate. For
example, in the configuration simulated earlier, the 10 concentrated compute nodes
cannot directly communicate with each other.

6.2. Topology

In this section we compare our proposed throughput-effective technique (DCIE 2P with
scattered placement) with two previously proposed topologies: flattened butterfly [Kim
et al. 2007] and CMesh [Balfour and Dally 2006]. Flattened butterfly is intended to
minimize latency which is not the first priority in our system; our priority is increasing
throughput. Since flattened butterfly is a high-radix topology, we used a 64-node
system as our baseline to have a meaningful comparison. The 64-node baseline is
configured as an 8 × 8 mesh with DOR routing and a top-bottom MC arrangement.
For the following comparisons we simulated 56 compute cores and 8 MCs and kept the
bisection bandwidth constant.

Our throughput effective technique results in a 28% HM speedup while flattened but-
terfly results in a 17% HM slowdown over the 64-node baseline. That is, our throughput-
effective technique is 54% HM faster than flattened butterfly. As the bisection band-
width is held constant, the link width of flattened butterfly is 8 bytes. This means
the terminal bandwidth of MC nodes in the flattened butterfly configuration is half of
the baseline single mesh and a quarter of DCIE 2P mesh configuration. This is the
primary reason for the slowdown of flattened butterfly and results in DCIE 2P being
more throughput effective, even though the flattened butterfly has a smaller area (total
router area is 41% smaller than DCIE 2P). The performance of flattened butterfly can
be improved with the multiport MC technique (Section sec:2port) but this would also
increase the cost of the flattened butterfly network.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:30 A. Bakhoda et al.

We also simulated a CMesh with express channels [Balfour and Dally 2006] while
keeping the bisection bandwidth constant. CMesh with express channels results in
a 19% HM speedup over baseline 64-node. That is, CMesh is 7% slower than our
throughput-effective technique while its area is around 21% higher. If we assume a
CMesh with no express channels, then keeping bisection bandwidth constant results
in a flit size of 32 bytes which translates into a total router area that is 4.5× larger
than our throughput-effective technique. This CMesh topology is also 12% faster than
the DCIE 2P technique but not as throughput effective. Note that all of our techniques
are applicable to CMesh and can increase its efficiency, although the benefit of half
routers diminishes as the number of local ports increases.

6.3. Scalability

We expect the benefits of our techniques to increase as the number of compute cores
increases in the future, as the number of MCs will not scale at the same pace as compute
nodes which exacerbates the many-to-few-to-many issue. In fact, the number of MCs
has been kept under eight by the industry. For example, while NVIDIA’s GTX280 has
8 MCs, more recent GTX480 and GTX TITAN have 6 MCs.

In order to show the scalability of our proposed techniques we simulated an 11 × 11
system with 112 compute nodes and 8 MCs in addition to the 64-node configuration
mentioned in Section 6.2. One node was left empty to prevent load-balancing issues in
our benchmarks that can skew the results for the 11×11 configuration. Applying DCIE
2P technique results in a 28% speedup and a 50% total router area reduction for the
64-node system. When same techniques are applied to the 120-node configuration, a
43% speedup and a 51% total router area reduction is achieved. In our baseline 36-node
configuration, similar comparisons result in a 11.9% speedup and a 49% total router
area reduction. These results indicate that benefits of our techniques increase in terms
of both speedup and area reduction as the network scales and becomes larger.

We also expect the benefits of reducing NoC area to increase as technology nodes
get smaller. As the technology scales other components on the chip also scale down, so
the ratio of routers to the total chip area does not go down. In fact, since: (1) the wire
pitch is not scaling at a lower rate than transistors and (2) crossbars and links are wire
dominated, we expect that the ratio of interconnect will increase in smaller technol-
ogy nodes. For example in Intel’s 65nm and 45nm technology nodes, transistors scale
at 65/45 = 0.69 rate while wire pitch scales at 210nm/160nm = 0.76 rate [Bai et al.
2004; Ingerly et al. 2008]. This means wire-dominated parts like a crossbar become
lager relative to other components. As a real example, 5-port 144-bit routers occupy
1.17 mm2 in 45nm technology [Salihundam et al. 2010] which is not particularly
small.

6.4. Power

While power is increasingly becoming an important factor in NoC design, our focus in
this article is to increase performance while reducing area. Nevertheless the design
process for a power-centric approach can be driven utilizing the same framework that
we used to arrive at our throughput-effective organizations. For example, a weighted
combination of power and area can be used as the denominator of throughput-effective
equation (we used IPC/mm2). In general, the power consumed in the router is domi-
nated by buffer, crossbar, and the channels [Sun et al. 2012]. Our throughput-effective
approach reduces NoC area by reducing complexity of these components—and thus, we
expect the power consumed to be proportionally reduced as well. Our approach never
increases the distance traveled by packets on the chip, as it has minimal routing. In fact,
the scattered MC placement of checkerboard routing reduces the average packet hop
count. The reduced hop counts should directly translate into dynamic power savings.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:31

Crossbars in half routers have fewer connections and thus save dynamic power as their
capacitance is smaller compared to full routers.

7. RELATED WORK

7.1. Accelerator Architectures

Rigel [Kelm et al. 2010a] is an accelerator that is fundamentally similar to our
architecture but provides a more flexible programming model compared to CUDA
and chooses an MIMD model rather than SIMT. NoC design of the Cell [Kistler et al.
2006] architecture is an example of making trade-offs between network area and
latency. The Cell designers chose a ring over a crossbar to meet their area and power
constraints [Krolak 2005]. The choice of centralized arbiters can limit scalability.
UltraSPARC T2 [Sun Microsystems Inc. 2007] microprocessor is a multithreading,
multicore CPU that uses a crossbar interconnect. GPUs and Cell are both related to
stream computing [Dally et al. 2003; Ahn et al. 2004].

7.2. Interconnection Networks

Increasing the number of cores on a single chip has increased the importance of NoCs.
Much of the research in NoC have focused on reducing network latency by improv-
ing different aspects of NoC such as lower-latency router microarchitectures [Mullins
et al. 2004; Kumar et al. 2007b], lower-diameter topologies [Balfour and Dally 2006;
Kim et al. 2007; Grot et al. 2009], or better flow control [Kumar et al. 2008, 2007a].
However, as we showed in Section 3, compute accelerator applications are more sensi-
tive to bandwidth and reducing latency results in minor improvements in their overall
performance. Bufferless routing [Moscibroda and Mutlu 2009] was proposed to re-
duce network cost by removing buffers but for applications with high traffic, network
throughput can be degraded.

On-chip networks for GPUs have been explored by Bakhoda et al. [2009] where the
impacts of different network parameters are evaluated. This work builds upon their
work, providing more in-depth analysis and proposing a cost-efficient on-chip network
architecture for accelerator architectures. Yuan et al. [2009] proposed a complexity-
effective DRAM access scheduling technique for manycore accelerators that relies on
modification to the arbitration scheme in the request path of NoC.

There are other recent attempts to specialize the NoC for many-to-few-to-many traffic
patterns. Lotfi-Kamran et al. [2012] segregate core and last-level cache slices into
different tiles; as a result, the traffic pattern becomes many-to-few-to-many. Similar to
our work, they apply the concept of reducing connectivity to decrease the area of NoC.
Unlike throughput accelerator workloads, their target domain of server workloads is
dominated by applications with high latency sensitivity.

Abts et al. [2009] studied alternative MC placements for core-memory traffic; how-
ever, they did not show the overall performance benefits on applications but focused
on latency metrics and synthetic traffic patterns. The MC placement that we use in
this work leverages this prior work by staggering the MC placement and shows how
overall performance can be significantly improved. Checkerboard routing is similar to
ROMM [Nesson and Johnsson 1995]. In 2-phase ROMM, a random node is selected
within the minimal quadrant and DOR routing is used to route the packet to a random
node in the first phase before routing to the destination in the second phase.

Increasing the radix of the routers in on-chip networks has been proposed [Balfour
and Dally 2006; Kim et al. 2007] to reduce the network diameter and increase network
performance, mainly through lower latency. The multiport approach differs as we only
increase radix across a few routers to minimize the impact on complexity.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:32 A. Bakhoda et al.

The proposed half router shares some similarity to the low-cost router microarchitec-
ture [Kim 2009]. However, unlike the low-cost router microarchitecture which provides
full connectivity for XY routing, the routing is restricted in the half router to further
reduce complexity. Volos et al. [2012] employ a double network organization where
each subnetwork is specialized based on the packet types traversing it. The resulting
asymmetric network enables energy saving in their target domain of cache-coherent
server workloads.

Das et al. [2009] employ a hybrid of bus and mesh interconnects which is beneficial
when there is locality in traffic. However, unlike CMPs there is no locality in our
traffic pattern as the communication is between the many cores and the few MCs. The
heterogeneous NoC work by Mishra et al. [2011] was done concurrently with our work
and utilizes the same concepts as our work which is improving a few routers of NoC
while improving the overall system performance. However, their work is orthogonal
to our work—they leverage the heterogeneity of the mesh topology to create their
heterogeneous network while our work leverages the heterogeneity of the traffic pattern
between the many nodes and few MCs.

8. CONCLUSION

In this article, we analyze the impact of communication and on-chip network across
a wide range of applications in throughput accelerators. We describe how reducing
router latency does not significantly improve overall application-level performance but
increasing costly bandwidth does. Then we show how the many-to-few-to-many traffic
pattern creates a bottleneck in the on-chip network as a result of large and frequent
read-reply packets. We focus on improving the throughput effectiveness of on-chip net-
work where we optimize for higher application throughput per area. To achieve a
throughput-effective on-chip network, we propose a checkerboard organization where
we exploit half routers to reduce crossbar area while maintaining a minimal rout-
ing algorithm. We then employ multiport routers at MCs to increase the terminal
bandwidth of the network and alleviate the many-to-few-to-many bottleneck. We then
propose the “double checkerboard inverted” network which utilizes half routers in a
channel-sliced network. This technique further improves performance by providing
better load-balancing and results in a 24.3% improvement of throughput effectiveness
over the baseline. We also propose an extension of the double checkerboard inverted
that employs class-based deterministic routing and can be utilized to provide a similar
throughput effectiveness if a peripheral placement of MCs is desired.

ACKNOWLEDGMENT

We thank Wilson W. L. Fung and the anonymous reviewers for their valuable feedback on this work.

REFERENCES

ABTS, D., JERGER, N. D. E., KIM, J., GIBSON, D., AND LIPASTI, M. H. 2009. Achieving predictable performance
through better memory controller placement in many-core cmps. In Proceedings of the IEEE/ACM
Symposium on Computer Architecture (ISCA’09). ACM Press, New York, 451–461.

AHN, J. H., DALLY, W. J., KHAILANY, B., KAPASI, U. J., AND DAS, A. 2004. Evaluating the imagine stream
architecture. In Proceedings of the IEEE/ACM Symposium on Computer Architecture (ISCA’04). IEEE
Computer Society, Washington, DC, 14–25.

ASANOVIC, K., BODIK, R., DEMMEL, J., KEAVENY, T., KEUTZER, K., KUBIATOWICZ, J., MORGAN, N., PATTERSON, D., SEN,
K., WAWRZYNEK, J., WESSEL, D., AND YELICK, K. 2009. A view of the parallel computing landscape. Comm.
ACM 52, 10, 56–67.

BAI, P., AUTH, C., BALAKRISHNAN, S., BOST, M., BRAIN, R., ET AL. 2004. A 65nm logic technology featuring 35nm
gate lengths, enhanced channel strain, 8 cu interconnect layers, low-k ild and 0.57 um2 sram cell. In
Proceedings of the IEEE International Electron Devices Meeting, IEDM Technical Digest. 657–660.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:33

BAKHODA, A., KIM, J., AND AAMODT T. M. 2010. Throughput-effective on-chip networks for manycore accelera-
tors. In Proceedings of the IEEE/ACM Symposium on Microarchitecture (MICRO’10). IEEE Computer
Society, Washington, DC, 421–432.

BAKHODA, A., YUAN, G. L., FUNG, W. W. L., WONG, H., AND AAMODT, T. M. 2009. Analyzing cuda workloads using
a detailed gpu simulator. In Proceedings of the IEEE Symposium on Performance Analysis of Systems
and Software (ISPASS’09). 163–174.

BALFOUR, J. D. AND DALLY, W. J. 2006. Design tradeoffs for tiled CMP on-chip networks. In Proceedings of the
ACM Conference on Supercomputing (ICS’06). ACM Press, New York, 187–198.

CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER J. W., LEE, S.-H., AND SKADRON, K. 2009. Rodinia: A
benchmark suite for heterogeneous computing. In Proceedings of the IEEE Symposium on Workload
Characterization (IISWC’09). 44–54.

COON, B. W. AND LINDHOLM, E. J. 2008. US patent 7,353,369: System and method for managing divergent
threads in a simd architecture. https://www.google.com/patents/US7353369.

SDK, C. 2009. NVIDIA CUDA SDK code samples. http://developer.nvidia.com/object/cuda sdk samples.html.
DALLY, W. J., LABONTE, F., DAS, A., HANRAHAN, P., AHN, J.-H., GUMMARAJU, J., EREZ, M., JAYASENA, N., BUCK, I.,

KNIGHT, T. J., AND KAPASI, U. J. 2003. Merrimac: Supercomputing with streams. In Proceedings of the
ACM/IEEE Conference on Supercomputing. ACM Press, New York, 35.

DALLY, W. J. AND TOWLES, B. 2004. Principles and Practices of Interconnection Networks. Morgan Kaufmann,
San Fransisco, CA.

DAS, R., EACHEMPATI, S., MISHRA, A. K., NARAYANAN, V., AND DAS, C. R. 2009. Design and evaluation of a
hierarchical on-chip interconnect for next-generation CMPs. In Proceedings of the IEEE Symposium on
High-Performance Computer Architecture (HPCA’09). 175–186.

FANG, J.-W., AND CHANG, Y.-W. 2010. Area-I/O flip-chip routing for chip-package co-design considering signal
skews. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 29, 5, 711–721.

FUNG, W. W. L., SHAM, I., YUAN, G., AND AAMODT, T. M. 2007. Dynamic warp formation and scheduling for
efficient GPU control flow. In Proceedings of the 40th IEEE/ACM Symposium on Microarchitecture
(MICRO’07). IEEE Computer Society, Washington, DC, 407–420.

GROT, B., HESTNESS, J., KECKLER, S. W., AND MUTLU, O. 2009. Express cube topologies for on-chip interconnects.
In Proceedings of the IEEE Symposium on High-Performnce Computer Architecture (HPCA’09). 163–174.

HARRIS, M. 2009. UNSW CUDA tutorial part 4 optimizing CUDA. http://cs.anu.edu.au/files/systems/
GPUWksp/PDFs/04 OptimizingCUDA full.pdf.

INGERLY, D., AGRAHARAM, S., BECHER, D., CHIKARMANE, V., FISCHER, K., ET AL. 2008. Low-k interconnect stack with
thick metal 9 redistribution layer and cu die bump for 45nm high volume manufacturing. In Proceedings
of the International Interconnect Technology Conference (IITC’08). 216–218.

ITRS. 2008. International technology roadmap for semiconductors 2008 update. http://www.itrs.net/Links/
2008ITRS/Home2008.htm.

JIANG, N., BECKER, D. U., MICHELOGIANNAKIS, G., BALFOUR, J., TOWLES, B., KIM, J., AND DALLY, W. J. 2013. A
detailed and flexible cycle-accurate network-on-chip simulator. In Proceedings of the IEEE Symposium
on Performance Analysis of Systems and Software (ISPASS’13). 86–96.

KAHNG, A., LI, B., PEH, L.-S., AND SAMADI, K. 2009. ORION 2.0: A fast and accurate noc power and area
model for early-stage design space exploration. In Proceedings of the IEEE/ACM Conference on Design
Automation and Test in Europe (DATE’09). 23–428.

KELM, J. H., JOHNSON, D. R., LUMETTA, S. S., FRANK, M. I., AND PATEL, S. 2010a. A task-centric memory model
for scalable accelerator architectures. IEEE Micro 30, 1, 29–39.

KELM, J. H., JOHNSON, D. R., TOUHY, W., LUMETTA, S. S., AND PATEL, S. 2010b. Cohesion: A hybrid memory model
for accelerator architectures. In Proceedings of the IEEE/ACM Symposium on Computer Architecture
(ISCA’10). ACM Press, New York, 429–440.

KESSLER, R. E., AND SCHWARZMEIER, J. L. 1993. Cray t3d: A new dimension for cray research. In Compcon
Spring Digest of Papers. 176–182.

GROUP, K. 2010. OpenCL - The open standard for parallel programming of heterogeneous systems.
http://www.khronos.org/opencl/.

KIM, J. 2009. Low-cost router microarchitecture for on-chip networks. In Proceedings of the IEEE/ACM
Symposium on Microarchitecture (MICRO’09). 255–266.

KIM, J., BALFOUR, J., AND DALLY, W. 2007. Flattened butterfly topology for on-chip networks. In Proceedings
of the IEEE/ACM Symposium on Microarchitecture (MICRO’07). IEEE Computer Society, Washington,
DC, 172–182.

KIM, J., DALLY, W. J., TOWLES, B., AND GUPTA, A. K. 2005. Microarchitecture of a high-radix router. In Proceedings
of the IEEE/ACM Symposium on Computer Architecture (ISCA’05). IEEE Computer Society, Washington,
DC, 420–431.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

21:34 A. Bakhoda et al.

KISTLER, M., PERRONE, M., AND PETRINI, F. 2006. Cell multiprocessor communication network: Built for speed.
IEEE Micro 26, 3, 10–23.

KONGETIRA, P., AINGARAN, K., AND OLUKOTUN, K. 2005. Niagara: A 32-way multithreaded sparc processor. IEEE
Micro 25, 2, 21–29.

KROLAK, D. 2005. Cell broadband engine eib bus. http://www.ibm.com/developerworks/power/library/
paexpert9/.

KUMAR, A., KUNDU, P., SINGH, A., PEH, L.-S., AND JHA, N. 2007a. A 4.6tbits/s 3.6ghz singlecycle noc router
with a novel switch allocator in 65nm cmos. In Proceedings of the IEEE Conference on Computer Design
(ICCD’07). 63–70.

KUMAR, A., PEH, L.-S., KUNDU, P., AND JHAY, N. K. 2007b. Express virtual channels: Towards the ideal intercon-
nection fabric. In Proceedings of the IEEE/ACM Symposium on Computer Architecture (ISCA’07). ACM
Press, New York, 150–161.

KUMAR, A., PEH, L.-S., AND JHA, N. K. 2008. Token flow control. In Proceedings IEEE/ACM Symposium on
Microarchitecture (MICRO’08). IEEE Computer Society, Washington, DC, 342–353.

KUMAR, P., PAN, Y., KIM, J., MEMIK, G., AND CHOUDHARY, A. N. 2009. Exploring concentration and channel
slicing in on-chip network router. In Proceedings of the IEEE/ACM Symposium on Networks-on-Chip
(NOCS’09). 276–285.

LEE, J. W., NG, M. C., AND ASANOVIC, K. 2008. Globally-synchronized frames for guaranteed quality-of-service
in on-chip networks. In Proceedings of the IEEE/ACM Symposium on Computer Architecture (ISCA’08).
IEEE Computer Society, Washington, DC, 89–100.

LEE, M. M., KIM, J., ABTS, D., MARTY, M., AND LEE, J. W. 2010. Probabilistic distance-based arbitration:
Providing equality of service for many-core CMPs. In Proceedings of the IEEE/ACM Symposium on
Microarchitecture (MICRO’10). IEEE Computer Society, Washington, DC, 509–519.

LEVINTHAL, A., AND PORTER, T. 1984. Chap - A simd graphics processor. In Proceedings of the ACM SIGGRAPH
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’84). 77–82.

LOTFI-KAMRAN, P., GROT, B., AND FALSAFI, B. 2012. NOC-out: Microarchitecting a scale-out processor. In Pro-
ceedings of the IEEE/ACM Symposium on Microarchitecture (MICRO’12). IEEE Computer Society,
Washington, DC, 177–187.

MISHRA, A. K., VIJAYKRISHNAN, N., AND DAS, C. R. 2011. A case for heterogeneous on-chip interconnects for
CMPs. In Proceedings of the IEEE/ACM Symposium on Computer Architecture (ISCA’11). ACM Press,
New York, 389–400.

MOSCIBRODA, T., AND MUTLU, O. 2009. A case for bufferless routing in on-chip networks. In Proceedings of the
IEEE/ACM Symposium on Computer Architecture (ISCA’09). ACM Press, New York, 196–207.

MULLINS, R. D., WEST, A., AND MOORE, S. W. 2004. Low-latency virtual-channel routers for on-chip networks. In
Proceedings of the IEEE/ACM Symposium on Computer Architecture (ISCA’04). IEEE Computer Society,
Washington, DC, 188–197.

NESSON, T., AND JOHNSSON, S. L. 1995. ROMM routing on mesh and torus networks. In Proceedings of the ACM
Symposium on Parallel Algorithms and Architectures (SPAA’95). ACM Press, New York, 275–287.

NICKOLLS, J., BUCK, I., GARLAND, M., AND SKADRON, K. 2008. Scalable parallel programming with CUDA. ACM
Queue 6, 2, 40–53.

NICKOLLS, J. R., COON, B. W., AND SHEBANOW, M. C. 2011. US patent application 20110072213: Instructions for
managing a parallel cache hierarchy (Assignee NVIDIA Corp.). March.

NVIDIA. 2009. NVIDIA’s next generation CUDA compute architecture: Fermi. http://openclcomputing.com/
index.php/cuda/10-fermi.

NVIDIA 2010. NVIDIA CUDA Programming Guide, 3.0 ed. NVIDIA.
PEH, L.-S. AND DALLY, W. J. 2001. A delay model and speculative architecture for pipelined routers. In Proceed-

ings of the IEEE Symposium on High-Performance Computer Architecture (HPCA’01). IEEE Computer
Society, Washington, DC, 255–266.

PFISTER, G. F. AND NORTON, V. A. 1985. Hot-spot contention and combining in multistage interconnection
networks. IEEE Trans. Comput. 34, 10, 943–948.

PULLINI, A., F., ANGIOLINI, A., MURALI, S., ATIENZA, D., MICHELI, G. D., AND BENINI, L. 2007. Bringing nocs to
65 nm. IEEE Micro 27, 5, 75–85.

RIXNER, S., DALLY, W. J., KAPASI, U. J., MATTSON, P., AND OWENS, J. D. 2000. Memory access scheduling. In
Proceedings of the 27th International Symposium on Computer Architecture. ACM Press, New York,
128–138.

RYOO, S., RODRIGUES, C., STONE, S., BAGHSORKHI, S., UENG, S.-Z., STRATTON, J., AND HWU, W.-M. W. 2008. Program
optimization space pruning for a multithreaded GPU. In Proceedings of the IEEE/ACM Symposium on
Code Generation and Optimization (CGO’08). ACM Press, New York, 195–204.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

Designing On-Chip Networks for Throughput Accelerators 21:35

SALIHUNDAM, P., JAIN, S., JACOB, T., KUMAR, S., ERRAGUNTLA, V., ET AL. 2010. A 2tb/s 6*4 mesh network with
DVFS and 2.3tb/s/w router in 45nm CMOS. In Proceedings of the IEEE Symposium on VLSI Circuits
(VLSIC’10).79–80.

SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T., ABRASH, M., DUBEY, P., JUNKINS, S., LAKE, A., SUGERMAN,
J., CAVIN, R., ESPASA, R., GROCHOWSKI, E., JUAN, T., AND HANRAHAN, P. 2008. Larrabee: A many-core x86
architecture for visual computing. ACM Trans. Graph. 27, 3, 18:1–18:15.

SEO, D., ALI, A., LIM, W.-T., RAFIQUE, N., AND THOTTETHODI, M. 2005. Near-optimal worst-case throughput
routing for two-dimensional mesh networks. In Proceedings of the IEEE/ACM Symposium on Computer
Architecture (ISCA’05). 432–443.

SUN, C., CHEN, C.-H. O., KURIAN, G., WEI, L., MILLER, J., AGARWAL, A., PEH, L.-S., AND STOJANOVIC, V. 2012. DSENT
- A tool connecting emerging photonics with electronics for opto-electronic networks-on-chip modeling.
In Proceedings of the IEEE/ACM Symposium on Networks-on-Chip (NOCS’12). IEEE Computer Society,
Washington, DC, 201–210.

SUN MICROSYSTEMS INC. 2007. OpenSPARCTM t2 core microarchitecture specification. http://www.oracle.com/
technetwork/systems/opensparc/t2-06-opensparct2-core-microarch-1537749.html.

VALIANT, L. G. 1990. A bridging model for parallel computation. Comm. ACM 33, 8, 103–111.
VALIANT, L. G. AND BREBNER, G. J. 1981. Universal schemes for parallel communication. In Proceedings of the

ACM Symposium on Theory of Computing (STOC’81). ACM Press, New York, 263–277.
VANGAL, S. R., HOWARD, J., RUHL, G., DIGHE, S., WILSON, H., ET AL. 2008. An 80-tile sub-100-w teraflops processor

in 65-nm CMOS. IEEE J. Solid-State Circ. 43, 1, 29–41.
VOLOS, S., SEICULESCU, C., GROT, B., POUR, N. K., FALSAFI, B., AND MICHELI, G. D. 2012. CCNoC: Special-

izing on-chip interconnects for energy efficiency in cache-coherent servers. In Proceedings of the
IEEE/ACM Symposium on Networks-on-Chip (NOCS’12). IEEE Computer Society, Washington, DC,
67–74.

WENTZLAFF, D., GRIFFIN, P., HOFFMANN, H., BAO, L., EDWARDS, B., RAMEY, C., MATTINA, M., MIAO, C.-C., BROWN III,
J. F., AND AGARWAL, A. 2007. On-chip interconnection architecture of the tile processor. IEEE Micro 27,
15–31.

WONG, H., BRACY, A., SCHUCHMAN, E., AAMODT, T. M., COLLINS, J. D., WANG, P. H., CHINYA, G., GROEN, A. K., JIANG,
H., AND WANG, H. 2008. Pangaea: A tightly-coupled ia32 heterogeneous chip multiprocessor. In Proceed-
ings of the IEEE/ACM Conference on Parallel Architectures and Compilation Techniques (PACT’08).
ACM Press, New York, 52–61.

WONG, H., PAPADOPOULOU, M.-M., SADOOGHI-ALVANDI, M., AND MOSHOVOS, A. 2010. Demystifying GPU microar-
chitecture through microbenchmarking. In Proceedings of the IEEE Symposium on Performance Analysis
of Systems and Software (ISPASS’10). 235–246.

YUAN, G. L., BAKHODA, A., AND AAMODT, T. M. 2009. Complexity effective memory access scheduling for many-
core accelerator architectures. In Proceedings of the IEEE/ACM Symposium on Microarchitecture (MI-
CRO’09). ACM Press, New York, 34–44.

Received May 2011; revised April 2013; accepted June 2013

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 21, Publication date: September 2013.

