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Abstract—Bufferless on-chip networks are an alternative type of on-chip network organization that can improve the cost-efficiency of
an on-chip network by removing router input buffers. However, bufferless on-chip network performance degrades at high load because
of the increased network contention and large number of deflected packets. The energy benefit of bufferless network is also reduced
because of the increased deflection. In this work, we propose a novel flow control for bufferless on-chip networks in high-throughput
manycore accelerator architectures to reduce the impact of deflection routing. By using a clumsy flow control (CFC), instead of the
per-hop flow control that is commonly used in buffered on-chip networks, we are able to reduce the amount of deflection by up to 92%
on high-throughput workloads. As a result, on average, CFC can approximately match the performance of a baseline buffered router
while reducing the energy consumption by approximately 39%.

Index Terms—on-chip networks, bufferless router, flow control, deflection routing
�

1 INTRODUCTION
With the increasing number of cores, on-chip networks (NoC)
are an important aspect of future manycore processor archi-
tecture. In this work, we leverage recently proposed bufferless
NoC and explore how it can be leveraged in manycore ac-
celerator architectures such as GPGPUs. While bufferless NoC
can provide benefits such as lower cost because of no input
buffers, one challenge with bufferless NoC is the performance
degradation as the network load increases. The manycore
accelerator architectures that we focus on require high network
throughput. To overcome this, we propose a flow control for
bufferless NoC such that it becomes suitable for such high-
throughput architectures.

Flow control in interconnection networks defines how the
shared network resources are utilized, especially when con-
tention occur for shared resources [4]. A commonly used flow
control in NoC is buffered flow control, as buffers decouple the
allocation of channel bandwidth resources. For example, if two
packets contend for the same output port in the same cycle, one
packet is granted access to the output port channel bandwidth
while the other packet is temporarily buffered. Buffered flow
control needs to communicate the availability of buffers in
neighboring routers and credit-based flow control is commonly
used in buffered flow control.

Recently, bufferless flow control has been extended to NoC to
reduce the cost of the network [11], [8]. Bufferless flow control
removes on-chip router buffers, but additional mechanisms
are needed when contentions occur. Packets can either be
misrouted or be dropped and retransmitted. However, it has
been previously shown that a bufferless network results in
lower network throughput without input buffers and is not
suitable when the network load increases. To overcome the
limitations, we propose to introduce flow control into bufferless
networks; we refer to this flow control as clumsy flow control
(CFC). CFC is based on conventional credit-based flow control
but since there are no router input buffers, CFC is destination-
based because the credit information is based on the packet’s
destination and not on the intermediate per-hop routers. CFC
is also an approximate or clumsy flow control because exact
buffer information is not necessarily required. For example,
if more packets are sent than the available buffer space, the
other packets will simply be deflected and not necessarily
dropped. However, by throttling network traffic, CFC mini-

mizes network congestion and improve overall performance
while improving the efficiency of the bufferless NoC.

2 BACKGROUND
2.1 Methodology
We evaluate bufferless NoC for manycore accelerator architec-
tures such as GPGPU, which is a massively multi-threaded,
throughput-oriented architecture. The NoC for such architec-
tures need to support high throughput. The traffic in these
architecture follow the many-to-few-to-many [1] traffic pattern
– from the many cores to the few memory controllers, and
then, back to the many cores. The GPGPU architecture that
we assume has two separate traffic classes – request and reply
traffic. We use two separate networks in parallel, similar to
[1], with one network for request traffic and another network
for reply traffic, in order to avoid protocol deadlock. The
baseline bufferless router is a deflection-based bufferless router
microarchitecture, similar to what was proposed earlier [11].

For synthetic workload, we use a cycle-accurate network
simulator [4]; for the different applications, we use the GPGPU-
Sim [2] simulator. The configuration for GPGPU-sim is listed
in Table 2 and other parameters are similar to what was used
in [1] – we use a 6×6 2-D mesh network with staggered
memory controller placement and 8 bytes channel size for
each network. For the buffered baseline, we assume 8 buffer
entries and 4 VCs per port and XY routing. ORION 2.0 [9] was
modified to measure the energy consumption of both buffered
and bufferless NoC. Applications that we used are listed in
Table 1. We selected applications with different characteristics
– including memory bandwidth requirements, and ratio of read
and write requests – in order to show the impact of bufferless
architecture across a wide range of applications.

For long packets consisting of multiple flits 1, a reassembly
buffer is needed at the endpoints to re-assemble the packet,
because flits can arrive out-of-order. There are two types of
long packets – write requests and read reply packets. Similar
to prior work [5], we use the MSHR structure as reassembly
buffers for read reply packets, while the memory queues at
the memory controllers are used for the write request packets.
An additional mechanism that resolves deadlock caused by
write request packets is needed for correctness. In Section 3.3,

1. Multi-flit packets are truncated into single-flit packets and age-
based arbitration is used to avoid livelock.
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TABLE 1
Applications used

Benchmark Label Suite

Fast Walsh Transform fwt CUDA SDK [12]
Scalar Product sp CUDA SDK [12]
Speckle Reducing srad Rodinia [3]
Anisotropic Diffusion
Breadth-First Search bfs Rodinia [3]
Nearest Neighbor nn Rodinia [3]
Back Propagation bp Rodinia [3]
Weather Prediction wp 3rd Party [2]
MUMmerGPU mum 3rd Party [2]
LIBOR Monte Carlo lib 3rd Party [2]
BlackScholes blk 3rd Party [2]
Sparse-matrix/dense- spmv Parboil [15]
vector multiplication
Fast Fourier Transform fft Parboil [15]

TABLE 2
Microarchitecture parameters

Shader Cores 28

Max Threads per Shader Core 1024

On-Chip Network Topology 2D Mesh

Interconnect Flit Size (Bytes) 8

Num of Virtual Channels 4

Interconnect Virtual Channel 8
Buffer Size (Flits)

L1 Cache Size / Core 16KB

DRAM Chips 16

Memory Controllers 8

DRAM Chips per MC 2

DRAM Queue Size 32

Memory Scheduler FR-FCFS
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Fig. 1. (a) Latency-throughput curve and (b) performance comparison
on CUDA workloads between buffered and bufferless.

we describe the details of how CFC can avoid such multi-flit
deadlock.
2.2 Bufferless NoC Limitations
The network-only latency-throughput curves of bufferless and
buffered NoC of the 2D mesh network are shown in Figure 1(a)
for uniform random traffic. The throughput of the bufferless
NoC is limited compared with that of buffered routers, similar
to what has been previously observed [11]. The performance
of the buffered router will vary depending on the number of
virtual channels and the amount of input buffers; however, for
bufferless, the throughput is limited as load increases because
of the increase in the amount of deflection. The impact of
bufferless routers across different applications is shown in
Figure 1(b). For a few applications, bufferless NoC actually im-
proves overall performance by a few percent as the deflection
routing introduces adaptivity. However, for other workloads, it
can result in up to 50% reduction in performance. On average,
the bufferless NoC resulted in a 19.2% reduction in perfor-
mance compared with that of baseline buffered NoC. There
is also a very small gain in energy reduction – approximately
5.3% (Figure 3). As a result, baseline bufferless NoC provides
very few benefits for these manycore accelerator architectures
that have high network load. In the following section, we
describe the clumsy flow control that can enable bufferless NoC
to be used with minimal impact on overall performance.

3 CLUMSY FLOW CONTROL (CFC)
3.1 CFC Description
A commonly used flow control to manage buffers in buffered
on-chip networks is credit-based flow control. Each upstream
router maintains a credit that represents the number of unoccu-
pied or free downstream buffer entries. As data flows in one
direction, credits flow in the opposite direction as shown in
Figure 2(a). A packet is partitioned into one or more flits [4]
and the width of each buffer entry corresponds to a flit width.
Before a flit is transmitted downstream, the appropriate credit
count is decremented. Once the flit departs the downstream
router, a credit is returned back upstream. As packets traverse
each hop, credit-based flow control is used to guarantee that
there is buffer space in the downstream router. If there are no
credits available, flits are stalled in the current router until a

Algorithm 1 Bufferless Flow Control at Source.
At each shader core i
for each read request destined to MC j do

if rij > 0 then
inject request;
rij--;

else
throttle;

end if
end for � similar procedure is done for write requests but credit
count wij is checked
for each reply from MC j do

if read reply then
rij++;

else
wij++;

end if

end for

credit is returned. This common flow control is implemented at
per-hop granularity as credit is transferred between neighboring
routers.

However, in a bufferless on-chip network without any router
input buffers, such per-hop credit-based flow control is not
needed as arriving flits are guaranteed to make progress: they
either move towards their destination if there is no contention
or are deflected if there is contention for the same output. 2

In this work, we propose a flow control for bufferless routers
that we refer to as clumsy flow control (CFC) – an approxi-
mate, destination-based credit-based flow control that throttles
network traffic to avoid network congestion and minimize
deflection in bufferless NoC. CFC is based on credit-based flow
control but instead of per-hop flow control, CFC is destination-
based as the credits represent buffer availability at the packet
destination as shown in Figure 2(b).

The credits in CFC are only maintained by the cores and
the credits do not represent local router buffer occupancy but
represent the buffer availability at the destination. With the
traffic from the cores to the memory controllers (MC), the
destination buffers that we leverage are the memory request
queues at the MCs. Thus, each credit represents the ability for
each core to inject another request into the network based on the
memory queue occupancy. By throttling the memory requests
through CFC, the number of in-flight requests are minimized
and thus, minimize network congestion and deflection routing.
Once requests are injected into the network, the credit count is
decremented and when a reply is received from the MCs, the
corresponding credit is incremented.

The differences between the two types of flow control are
summarized in Table 3. Although credits are used to represent
available buffer entries, one key difference is the accuracy of
the credits. In credit-based flow control, credits are an accurate
representation of the buffer space; this guarantees that packets
are not dropped in the network. However, in CFC, the credits
do not necessarily need to be an exact representation of the
memory queue buffer space but can be an approximation – hence
clumsy flow control. If more packets are sent compared to the
amount of buffer space available, the extra packets will be
deflected – following normal behavior of the bufferless router.
In addition, credits in credit-based flow control are explicitly

2. Alternative bufferless router implementation can be done where
packets are dropped when contention occur [8]. We focus on the deflec-
tion routing bufferless implementation but our proposed mechanism
can be extended to drop-retransmission bufferless routers as well.
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Fig. 2. (a) Credit-based flow control of memory request with buffered network and (b) clumsy flow control (CFC) with bufferless network. For
simplicity, only one core and one memory controller (MC) are shown. With more than one MC, each core would have separate credit information for
each destination (or MCs) with CFC.

TABLE 3
Comparisons between the two flow controls.

credit-based clumsy
flow control flow control (CFC)

distance per-hop destination
granularity flits buffer entry memory queue entry

accuracy exact : inexact :
packet is not transmitted packet can still be sent

if there is no buffer without impacting correctness
credit separate, dedicated implicit

transmission wires3 piggybacking

returned to upstream routers, either through dedicated wires or
by piggybacking. In comparison, CFC does not require explicit
credits to be returned but credits are implicitly returned when
response packets return from the MC back to the cores.
3.2 Details
Details of CFC are described in Algorithm 1. Each core (i)
maintains two credit counts for each memory controller (j),
which we represent as rij and wij for read and write requests.
Initially, rij = r and wij = w ∀i, j, where r and w are
the initial credits allocated to each core for read and write
requests. For a read request from core i destined to memory
controller j, if rij > 0, the core injects the request into the
network and decrements rij . If rij = 0, the requests are
throttled until credit becomes available. Once a reply returns
from memory controller j back to core i, the appropriate
rij is incremented. For write requests, the corresponding wij

value is used. We denote different implementations of CFC as
CFC(r, w). The values of r and w can be any value greater than
0. For smaller values, more throttling is done to minimize the
amount of deflection, but smaller values can also limit overall
performance. For larger values, there is less throttling but also
results in more deflection in the network. As r and w values
approaches infinity, CFC corresponds to the baseline bufferless
router without any flow control. The impacts of different initial
values of credits are evaluated in Section 4.
3.3 Deadlock and Livelock
With deflection routing and bufferless NoC, both livelock and
deadlock can be an issue. We avoid livelock by using age-based
or oldest-first arbitration [11]. Protocol deadlock is avoided by
having separate networks for request and reply (Section 2.1)
but another type of deadlock can still occur because of multi-
flit packets and the destination re-assembly buffer. If each
entry in the destination re-order buffer is partially occupied
(i.e., only some of the flits of the packets have arrived), the
remaining write request flits need to arrive n order for the
system to make progress. However, if the network is full and
the remaining write request flits cannot be injected, deadlock
will occur. This deadlock is identical to the problem identified

3. Piggybacking can also be used but is not common in on-chip
networks because of the abundant amount of on-chip wires.
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Fig. 3. (a) Performance and (b) energy comparison of using CFC with
different credit numbers.

earlier as reassembly buffer overflow [5] and occurs because of
a lack of flow control in the bufferless NoC. In this work, we
leverage CFC in order to avoid such deadlock. With CFC(r,w),
if the sum of w values across all the cores is smaller than the
write memory queue size, write request packets are guaranteed
space at the destination. In this work, we apply CFC to the
forward path (i.e., from the cores to the MCs) but not on the
return path from the MCs to the cores. No flow control is
explicitly needed on the return path since the forward path
flow control also limits the replies from the MCs back to the
cores.
4 EVALUATION
In this section, we evaluate the performance and energy impact
of using CFC, using the configuration described earlier in
Section 2.1. We evaluate CFC(r,w) but use w = 1 to avoid
write deadlock and vary the value of r. Figure 3 shows the
performance and energy results for CFC(r,1). As mentioned
earlier, a baseline bufferless NoC results in significant loss of
performance by up 50%, and an approximately 20% reduction
on average. Among the different CFC(r,1) that we evaluated,
CFC(2,1) resulted in the best overall performance, on average,
and performance decreases when r is either increased or
decreases As r increases, it introduces more traffic and causes
more congestion, which degrades overall performance, while
for a smaller value of r, throttling limited overall performance.
On average, CFC(2,1) resulted in only a performance loss of
only 1.8%; in several workloads, CFC(2,1) actually exceeded the
performance of the baseline buffered network. CFC(2,1) also
improves the performance of the baseline bufferless by 22%.
The energy consumed in the baseline bufferless can exceed
that of the baseline buffered by up to 38% (Figure 3(b)) and on
average, only results in 5.3% reduction in energy. However, by
using CFC(r,1), the energy is significantly reduced – CFC(2,1)
reduces energy by 39% and 36% compared with the baseline
buffered and baseline bufferless NoC, respectively.

To understand the results with CFC(r,w), we first plot the
average number of deflections per flit in Figure 4(a). As r
decreases, the amount of deflection also decreases as the num-
ber of flits in-flight are reduced. Compared with the baseline
bufferless, CFC(2,1) results in an approximately 92% reduction
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Fig. 4. (a) Average number of deflections and (b) average memory access latency (AMAT) latency per packet. The AMAT are partitioned into (c)
read and (d) write requests. All results are normalized to baseline buffered NoC.

in average number of deflections per flit. The impact of both
CFC flow control and reduction in deflection improves the av-
erage memory access latency (AMAT), as shown in Figure 4(b).
The AMAT that we measure includes the request network
latency from the core to the MC, the memory access latency,
and the reply network latency from the MC back to the core.
For the buffered NoC, the latency includes the queuing latency
within the network, while for the bufferless and CFC(r,1), the
additional source latency caused by throttling is also included;
thus, AMAT is measured from when the request is generated
till when the data arrives. The reordering latency (i.e., the
amount of time it takes for all of the flits to arrive) for multi-flit
packets is also included in the bufferless implementations.

While CFC(8,1) increases AMAT by 33% compared with
the baseline buffered, CFC(2,1) results in minimal change (an
increase of only 4.7%). For workloads such as SP, CFC(2,1)
does increase AMAT by 83%, which results in a reduced
overall performance but does not necessarily translate into
an 83% reduction in performance since the large number
of threads is able to tolerate some memory access latency.
We also partition AMAT into read AMAT (Figure 4(c)) and
write AMAT (Figure 4(d)). As r increases, the read AMAT in
general decreases since the throttling is reduced resulting in
improved read AMAT, except for CFC(1,1). However, for the
write AMAT, all except for CFC(1,1) results in an increase of
the write request latency as r increases. Although r is related
to the read requests, it also impacts the write request latency
since the amount of traffic from the read requests impact
the write traffic. In this work, we assume a static CFC since
each core had a static value of r and w. However, it remains
to be seen if dynamic CFC can be implemented where the
credits are borrowed between neighboring cores to help overall
performance while still avoiding deadlock.

5 RELATED WORK
Different bufferless NoC routers have been recently pro-
posed [11], [8], [7]. To overcome the complexity in the control
logic of the bufferless NoC, CHIPPER [5] was proposed to
minimize the complexity with minimal loss in performance.
However, these prior NoC architectures do not necessarily
provide high performance at high load when packets continue
to be deflected or need to be retransmitted multiple times.
Recently, MinBD [6] was proposed, which adds an intermediate
buffer to CHIPPER in order to minimize deflection. However,
adding intermediate buffers reduces the benefits of the buffer-
less router. Gómez et al [7] reduced the amount of congestion
or packets being dropped by combining dropping packets
and misrouting and adding additional channels. In this work,
we attempt to reduce network congestion without additional
complexity to the network. Ogras and Marculescu [14] predicts
buffer usage and throttles when space is not available in a
buffered NoC. Nychis et al [13] argued for congestion control
in bufferless NoC. They discussed application-aware throttling

when multiple applications are being executed simultaneously
and proposed a central congestion controller. Our work is
similar as we also present an effective congestion control
mechanism. However, this work differs as we focus on high-
throughput multithreaded workloads and we show how a
simple, distributed congestion control through CFC can be
used. [10] shows the limitations of the bufferless because of
the deflection routing; we overcome these limitations of the
bufferless NoC through flow control.

6 CONCLUSION
Introducing flow control to bufferless on-chip networks (NoC)
can extend bufferless NoC to manycore accelerators which
results in high load for the network. In this work, we have
introduced clumsy flow control (CFC), which reduces the
amount of deflection in the network by throttling and reducing
congestion in bufferless networks for manycore accelerators.
Our results show that CFC results in 92% reduction in the
amount of deflection that occurs in the network, thus, provid-
ing a 39% reduction in energy on average, with minimal loss
in overall performance.
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