
Exploiting Mutual Awareness between Prefetchers and
On-chip Networks in Multi-cores

Junghoon Lee, Minjeong Shin, Hanjoon Kim, John Kim, Jaehyuk Huh
Department of Computer Science, KAIST

{ijij41,shinmj,hanj,jjk12,jhhuh}@kaist.ac.kr

Abstract—The unique characteristics of prefetch traffic have
not been considered in on-chip network design for multi-
core architectures. Most prefetchers are often oblivious to the
network congestion when generating prefetech requests. In
this work, we investigate the interaction between prefetchers
and on-chip networks and exploit the synergy of these two
components in multi-core architectures. We explore prefetch-
aware on-chip networks that differentiates between prefetch
and demand traffic by prioritizing demand traffic. In addition,
we propose prefetch control mechanism based on network
congestion. Our evaluations show that the combination of the
proposed prefetch-aware router architecture and congestion-
sensitive prefetch control improves the performance of bench-
marks by 11-13% on average, up to 30% on some of the
workloads.

I. INTRODUCTION

A hardware prefetching techniques have been widely used
in microprocessors to hide the long memory latencies [3].
With the migration towards multi-core architectures, prefetch
traffic needs to traverse the on-chip network that connects
all the on-chip components together [2]. However, design
of on-chip networks have not considered the unique charac-
teristics of network traffic generated by prefetchers. Unlike
request and reply (data) traffic, prefetch traffic is essentially
speculative, and thus can be useless, if the prediction is
incorrect. Even for successfully predicted prefetch requests,
the data may be actually used hundreds or thousands cycles
after the initiation of prefetch requests. In addition to the
prefetch oblivious network design, most prefetchers are also
insensitive to the status of networks. As shown in Figure 1,
prefetch traffic accounts for a significant portion of the over-
all traffic on on-chip networks. 1 This indicates that networks
must be aware of the prefetch traffic, which have different
requirements for criticality from the demand traffic. As the
amount of prefetch traffic is significant, the opportunity
arising from the distinct characteristics of prefetch traffic
should be exploited.

In this work, we investigate how the two components, on-
chip networks and hardware prefetchers, affect each other,

1For our evaluation in this work, we use the Simics with the GEMS
and Garnet network model (64 in-order cores with 32KB L1, shared 64
L2 256KB banks, 8x8 concentrate mesh (c-mesh) [1] networks), and a
stream prefetcher with a degree of two (stream-2) and a combined
prefetcher which adds the next-line prefetching to the stream-2 prefetcher
(combined).

0

20

40

60

80

100

P
ac

ke
ts

Prefetch packets Demand packets

m
ix

-1

m
ix

-2

m
ix

-3

m
ix

-4

m
ix

-5

m
ix

-6

m
ix

-7

av
g.

m
ix

-1

m
ix

-2

m
ix

-3

m
ix

-4

m
ix

-5

m
ix

-6

m
ix

-7

av
g.

stream-2 combined

Figure 1. The decomposition of the total packets into demand and prefetch
packets

and explore the design space of mutually aware networks
and prefetchers. We first study the network design for two
distinct type of traffics generated by the cores and the
prefetchers. We propose a priority-based arbitration mech-
anism for routers, called Traffic-aware Prioritized Arbiter
(TPA), which gives a higher priority to non-prefetch packets
than prefetch packets. In addition, we propose a prefetch
control mechanism, which adjusts the prefetch traffic based
on the status of networks, called Traffic-aware Prefetch
Throttling (TPT). TPT throttles prefetch generations at the
hardware prefetchers, depending on network congestion.

II. PREFETCH-AWARE ON-CHIP NETWORK

Since prefetch packets should have less priority than
demand packets, we evaluate alternative prefetch-aware on-
chip networks which separate network resources according
to their priority. The two main network resources in on-
chip networks are the buffers and the channel bandwidth.
Partitioned VC is on network separates the buffer resources
(or VCs) between the two type of traffic. Another alternative
is partitioned network where the channel bandwidth is par-
titioned into multiple channels to create multiple networks
in parallel – similar to channel slicing [2] but the network
is selected based on the traffic type.

In addition to partitioning network resources, we propose
traffic-aware prioritized arbitration (TPA) which does not
require separating any network resources. With TPA, round-
robin arbitration is first done among all the demand packets.
If there are no demand packets, then round-robin arbitration
is done among the prefetch packets. To prevent priority in-
version (i.e., demand packets being buffered behind prefetch
packets), we only allocate a VC to a new packet once

2011 International Conference on Parallel Architectures and Compilation Techniques

1089-795X/11 $26.00 © 2011 IEEE

DOI 10.1109/PACT.2011.27

177

2011 International Conference on Parallel Architectures and Compilation Techniques

1089-795X/11 $26.00 © 2011 IEEE

DOI 10.1109/PACT.2011.27

177

0.0

0.5

1.0

IP
C

 n
or

m
al

iz
ed

 to
 b

as
e

pr
ef

et
ch

 (
8B

W
)

BW(4,4) BW8+VC BW8+TPA
m

ix
-1

m
ix

-2

m
ix

-3

m
ix

-4

m
ix

-5

m
ix

-6

m
ix

-7

m
ix

-1

m
ix

-2

m
ix

-3

m
ix

-4

m
ix

-5

m
ix

-6

m
ix

-7

stream-2 combined

Figure 2. Performance comparison of alternative prefetch-aware on-chip
network architecture.

the previous packet has departed the downstream router.
With fixed prioritized arbitration, the starvation of prefetch
packets can occurs. To prevent this, if a prefetch packet
has not been serviced for t cycles, the prefetch packet is
upgraded and receive priority.

In Figure 2, we compare the performance against a base-
line on-chip network with prefetching enabled and compare
the following alternatives – BW(4,4), a partitioned network
where the channel bandwidth of 8 bytes is partitioned into
two networks of 4 bytes, one network for prefetch and
another network for demand traffic; BW8+VC where the
VC is partitioned into separate VCs for prefetch and demand
packets; and BW8+TPA where the prioritized arbitration is
used but no resource partitioning. Both resource partition-
ing (BW(4,4) and BW8+VC) result in poor performance,
compared with the baseline; in particular, BW(4,4) can
result in up to 35% loss in performance compared with
the baseline. In comparison, BW8+RAP shows improvement
in performance, by up to 10%. Thus, despite the different
characteristics of demand and prefetch traffic, segregating
network resources (i.e., router buffers and network band-
width) does not result in performance improvement as the
shared resource is partitioned statically among the different
traffic. However, by using prioritized arbitration, traffic can
share all the network resources and result in performance
improvement, with minimal impact on router complexity.

III. NETWORK-AWARE PREFETCHERS

To complement prefetch-aware network, we also propose
traffic-aware prefetch throttling (TPT) that detects network
congestion dynamically and throttles prefetch requests if the
network is congested. TPT tracks congestion in the network
and if the generated prefetch request needs to be routed
through one of the congested paths, the request is throttled.
A congested path from a source to a destination is defined as
a path in the network which has longer packet latency than
the unloaded (i.e. zero-load) latency from the same source to
the destination. We assume each packet carries a timestamp
to estimate path congestion. The congestion information is
returned by piggybacking on packets returning from the
destination back to the source. No centralized resource is
required as TPT is distributed with each node tracking
congestion and determining whether throttling is needed.

0.0

0.5

1.0

A
ve

ra
ge

 IP
C

base prefetch TPA TPA+TPT TPA+TPT-A

combined
mix-1 mix-2 mix-3 mix-4 mix-5 mix-6 mix-7 avg.

Figure 3. Performance with network-aware prefetchers

In addition to the network status, the accuracy of prefetch-
ing also helps determine the usefulness of prefetch traffic
and has been previously proposed [4]. The TPT can be
augmented with prefetch accuracy information in throttling
prefetching requests. Thus, we propose TPT with accuracy-
awareness (TPT-A). Different implementation of TPT-A is
possible which includes combining the network congestion
and prefetch accuracy information together to determine a
threshold for throttling. In our initial implementation of TPT-
A, when prefetch requests are throttled based on network
congestion, the prefetch requests are still injected if the
request is determined to have a very high accuracy.

Figure 3 presents results for TPA-only, TPA+TPT,
and TPA+TPT-A configurations – compared with baseline
prefetcher. TPT improves performance by up to 30% with
an aggressive combined prefetcher. For workloads with
relatively low prefetch generation rates, the congestion level
is relatively low and very few prefetch requests are throt-
tled. TPT-A improves TPT in general as highly accurate
prefetches are still injected into the network and help im-
prove overall performance. As a result, our initial results
indicate that aggressive prefetchers must be sensitive to
network traffic. In addition, combination of both TPA and
TPT can help increase overall performance by exploiting the
mutual awareness between the prefetcher and the on-chip
network.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (2011-0015039).

REFERENCES

[1] J. Balfour and W. J. Dally. Design tradeoffs for tiled cmp on-chip
networks. In ICS ’06: Proceedings of the 20th annual international
conference on Supercomputing, pages 187–198, New York, NY, USA,
2006. ACM.

[2] W. J. Dally and B. Towles. Route packets, not wires: on-chip
interconnection networks. In Proceedings of the Design Automation
Conference, pages 684–689, Las Vegas, NV, June 2001.

[3] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Prefetch-aware shared
resource management for multi-core systems. In ISCA, pages 141–152,
2011.

[4] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt. Coordinated
control of multiple prefetchers in multi-core systems. In MICRO 42:
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 316–326, New York, NY, USA, 2009.
ACM.

178178

