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Abstract—Memory controllers in graphics processing units
(GPU) often employ out-of-order scheduling to maximize row
access locality. However, this requires complex logic to enable
out-of-order scheduling compared with in-order scheduling. To
provide a low-cost and low-complexity memory scheduling, we
propose an alternative memory scheduling where the memory
scheduling is performed not at the destination (i.e., memory
controller) but is done at the source (i.e., the cores). We
propose two complementary techniques in source-based mem-
ory scheduling – network congestion-aware source throttling
and superpackets, where multiple request packets are grouped
together to create a single superpacket. By combing these
techniques, the performance across a wide range of application
is within 95% of the complex FR-FCFS on average and at
significantly lower cost and complexity.

I. INTRODUCTION

In many-core accelerator architectures such as graphics

processing units (GPU), the memory system is a shared

resource among the large number of cores and threads. As

the number of cores increases, the memory system shared by

the cores/threads not only includes the memory controllers

but also the on-chip network that need to be traversed to

reach the memory controllers. Within the memory system,

memory scheduling, which is performed in the memory

controllers, has significant impact on overall system perfor-

mance. To increase memory scheduling efficiency, an out-

of-order scheduler or First-Ready First-Come First-Serve

(FR-FCFS) [2] is commonly used but FR-FCFS requires

a complex structure as a fully-associative comparisons are

required. In this work, we propose an alternative mem-

ory scheduling to reduce the complexity of the memory

scheduler by making the memory scheduling decision at

the source or the cores, instead of conventional memory

scheduling done at the destination or the memory controllers.

The source-based memory scheduling exploits two tech-

niques: congestion-aware source throttling and superpackets.

Since the high on-chip network traffic caused by large mem-

ory access limits overall performance, we propose source

throttling through congestion-aware memory scheduling and

describe a distributed congestion-aware memory scheduling

which throttles memory requests locally at each core. We

also exploit the observation from prior work [3] which

showed that for non-graphics, highly-parallel (GPGPU) ap-

plications on manycore accelerators, high DRAM row buffer

locality access pattern is observed at each shader core but

the locality is destroyed in the on-chip network as pack-

ets become interleaved. Instead of modifying the on-chip

network which increases the storage requirement and can

adversely impact the router critical path [3], we propose to

create superpackets at the source such that the row locality is

maintained when the DRAM requests arrive at the memory

controller.

II. CONGESTION-AWARE MEMORY SCHEDULING

The memory-intensive applications evaluated in this work

create high memory traffic and congestion at the memory

controllers. This congestion creates network congestion –

which in turn, impacts overall performance. To reduce

network congestion, we propose source-throttling of mem-

ory requests to decrease the number of in-flight memory

requests and reduce network congestion. The reduced net-

work congestion translates into lower overall memory access

latency while providing higher overall performance and also

enables the complexity of the memory scheduler and on-chip

network to be reduced.

We introduce a distributed congestion-aware algorithm

(local congestion-aware (LCA) algorithm) as described be-

low (Algorithm 1). Each core (c) maintains the number of

outstanding requests (rc(m, b)) injected by the local core for

each MC (m) and each bank (b) and throttle based on this

value. In LCA, since the shader cores operate at a warp

granularity we add additional constraint that all requests

within a warp must be eligible – i.e., each request meets

the constraints of the LCA algorithm.

Algorithm 1 LCA algorithm

At each shader core (c)
if all req within a warp satisfy rc(m, b) = 0 then

for all req within a warp do
inject req;
rc(m, b)++;

end for
else

throttle;

end if

In addition to LCA, we propose a modified LCA (mLCA)

that is based on the LCA algorithm but further restrict or

throttle the injection of packets into the network. We add a

core constraint to LCA – if the total number of outstanding

requests in the core exceed a threshold t, the core is throttled

until replies are received.
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Figure 1: (a) Packet header change required to support superpacket
with the highlighted bit showing the only change required. Example
of injecting four requests using (b) normal packets and (c) a
superpacket is also shown.

III. SUPERPACKETS

To avoid the loss of inherent row locality, multiple re-

quests (and thus, multiple packets) injected from a single

shader core can be grouped together to form a superpacket
such that other requests are not interleaved when these re-

quests arrive at the destination memory controller. The use of

superpacket minimizes the need for a complex out-of-order

memory scheduler to extract row locality at the destination.

The only modification needed to support superpacket in an

on-chip network is additional bits in the packet header to

differentiate between a normal packet and a superpacket

as shown in Figure 1(a). From the network perspective,

the superpacket is identical to a normal packet but only

with larger number of flits. At the ejection port of the

destination router, however, each packet within a superpacket

is partitioned into separate packets and transmitted to the

memory controller.

An example of superpacket is shown in Figure 1(b,c).

Baseline normal packets are shown in Figure 1(b), which

consist of 4 requests that are injected as 4 separate packets

into the network. These stream of requests can be interleaved

with requests from other cores while traversing the on-chip

network, even if they have row locality. However, with a

superpacket formed as shown in Figure 1(c), all four requests

are grouped together in a single packet and thus, regardless

of the on-chip network arbitration, other requests cannot be

interleaved since packet is the unit of routing in on-chip

networks.

A superpacket can be formed based on the order of the

requests that are considered at the core (in-order (I) or out-

of-order (O)), source critieria (whether the requests only

within a warp are considered (W ) or all requests from the

core are considered C), or destination critiera (MC-match

(M ) or row-match (R)) (Table I).

Config Description

ICM group all consecutive requests
from a shader core to a given MC

ICR group all consecutive requests to the same row

IWM similar to ICM but only requests
from the same warp can be grouped together

IWR similar to ICR but only requests
from the same warp can be grouped together

OCM maximize the size of superpacket
by maximizing the search space for the superpacket

OCR maximize DRAM row locality from a shader core

OWM N/A
OWR N/A

Table I: Different configuration of superpacket.
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Figure 2: Performance of representative superpacket configurations
and evaluation result of combining superpacket and congestion-
aware memory scheduling.

IV. PRELIMINARY RESULTS

To evaluate our alternative memory scheduling, we use a

detailed, cycle-level simulator (GPGPU-Sim) [1]. We use

a 6×6 2D mesh network with 28 shader cores and 8

MCs. We use applications from NVIDIA’s CUDA software

development kit (SDK), benchmarks from Rodinia, Parboil,

and from the set used by [1]. With superpacket, the ICR
increases performance by 14% on average while OCR
increase performance by 20% over BFIFO and achieves

92% of FR-FCFS, without requiring a complex out-of-order

scheduler (Figure 2). The performance results of combining

congestion-aware scheduling and superpacket are also shown

in Figure 2. BFIFO with mLCA and OCR superpacket

configuration is able to achieve 95% of the FR-FCFS results.
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