FlexiBuffer: Reducing Leakage Power in
On-Chip Network Routers

Gwangsun Kim, John Kim
Department of Computer Science
KAIST
Daejeon, Korea
{gkim, jjk12}@cs.kaist.ac.kr

ABSTRACT

The increasing number of integrated components on a single chip
has increased the importance of on-chip networks. A significant
part of on-chip network routers is the buffer, as it occupies a large
area and consumes a significant amount of power. In this work,
we propose FlexiBuffer, a microarchitecture in which we minimize
buffer leakage power by using fine-grained power gating and ad-
justing the size of the active buffers adaptively. We propose two
microarchitecture techniques to support fine-grained power gating
— early credit in credit-based flow control and new buffer organi-
zations to overcome the limitation of circular buffers. Our results
show that, with minimal loss in performance, we can reduce the
leakage power of on-chip network router buffers by up to 61% and
overall router power consumption by up to 39%.

Categories and Subject Descriptors

C.1.2 [Computer System Organization]: Multiprocessors—In-
terconnection architectures

General Terms
Design

Keywords

Leakage power, Buffer Organization, Power gating, On-chip net-
works, Routers

1. INTRODUCTION

The on-chip network that interconnects the different components

together is becoming more critical as on-chip network size increases.

One of the key components of an on-chip network router is the
buffer because of its large area and high power consumption [8].
Buffers are necessary to provide high performance in an on-chip
network; however, we make the observation that, even when the
network is saturated, not all of the buffers in the network are fully
utilized. As a result, power gating can be leveraged to turn off the
unused buffers and minimize its leakage current. By leveraging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC'11, June 5-10, 2011, San Diego, California, USA

Copyright © 2011 ACM 978-1-4503-0636-2/11/06...$10.00

936

Sungjoo Yoo
Department of Electronic and
Electrical Engineering
POSTECH
Pohang, Korea

sungjoo.yoo@postech.ac.kr

power gating, we propose to achieve an energy-proportional [1]
on-chip network.

In this work, we propose a fine-grained power-gating of the on-
chip network router’s input buffers at the per-entry granularity. How-
ever, fine-grained power gating of buffers presents several chal-
lenges in the design of an on-chip network, including how to man-
age the activation and deactivation of buffer entries and how to ac-
count for the wakeup latency. We modify conventional credit-based
flow control and propose early credit such that buffers can be turned
on/off with minimal change to the flow control. In addition, we
show how conventional circular buffer organization is problematic
with fine-grained power gating because of its energy overhead. To
overcome this overhead, we propose a modified linked-list based
organization and a novel split queue buffer management that reuses
the physical buffer entries without requiring a complex buffer man-
agement scheme.

2. BACKGROUND / MOTIVATION

In this section, we provide a background on the role of buffers
in on-chip networks and discuss related work on minimizing the
negative impact of buffers. We also show how buffers impact per-
formance but are not fully utilized, which motivates the need to
leverage fine-grained power gating to turn off unused buffers en-
tries.

2.1 Buffers in On-Chip Networks

Buffers are commonly used in interconnection networks to de-
couple the allocation of channel resources [4]. It is well known that
increasing the size of buffers provides higher performance by in-
creasing network throughput. A latency-throughput plot is shown
in Figure 1 as the amount of input buffers is varied for uniform ran-
dom traffic pattern. We assumed an aggressive single-cycle router
with a single-cycle wire delay and simulated a 64-node, 8x8 2D
mesh network. Increasing the size of buffers from 1 to 4 entries
provides a significant improvement in overall performance as suffi-
cient buffer depth is provided to cover the credit round-trip latency.
However, continuing to increase the size of buffers beyond 8-16
entries provides a very small increase in performance; thus, we as-
sume a baseline router with 8 entries per buffer (or virtual channels)
in this work.

Buffers in on-chip networks occupy a significant portion of the
area and power. To reduce the negative impact of buffers in on-
chip networks, bufferless on-chip networks have been recently pro-
posed [12, 5, 11]. Since there are no buffers to store packets in the
network, bufferless networks handle contentions with either deflec-
tion routing [12] or dropping packets and retransmitting them [5].
Although bufferless networks eliminate the need for buffers, they

51.5

IS
S

w
o

=
o

Fraction of buffers (%)
N
o

0

Figure 2: (a) Buffer utilization under uniform random traf-

3 [o1A2-e4+8-5 160232

S » 70%

>

) £ 60% .

: I

8 £ 40%

A

2 20% -

§ % 10%

Y g 0% wonttBlL |

5o T R] < 0 02 04 06 08 1

2 ion rate (packets/ ', 1o/ w&w; Injection Rate (flits/cycle/node)
(a)

Figure 1: Impact on perfor-

mance as the number of buffer fic as offered traffic is varied. and (b) buffer utilization his-

entries is varied. togram in saturation.

also introduce additional overhead. For example, they need reorder
buffers at the destination or additional buffering at the source to
retransmit the packets. Recent study [11] showed that if all these
overheads are properly accounted for, the benefits of bufferless can
be reduced. To provide the benefits of both bufferless and buffered
flow control, adaptive flow control (AFC) [7] has been proposed,
which adapts between the two flow controls. This work leverages
power gating to disable all buffer entries at an input port when in
bufferless mode. Since bufferless mode uses deflection routing,
which requires reorder buffers, AFC leverages the existing MSHR
buffers. As a result, their flow control is restricted to cache coher-
ence protocols that preallocate entries in the MSHR for all network
requests.

2.2 Buffer Utilization

As network load increases, more packets arbitrate for the shared
channel resources and packets that lose arbitration are stored in the
buffers until they win arbitration. Thus, higher network loads or
higher rates of traffic injection lead to higher buffer utilization. In
Figure 2(a), we plot the average buffer utilization across all the
buffers in a 2D mesh network and the standard deviation of buffer
utilization for uniform random traffic. ' When the injection rate
is low, the utilization of buffers is very low (under 1% utilization)
with very small variance across the network. As the network load
approaches saturation, both the buffer utilization and the variance
increase. However, simulations results show that even when the
network is in saturation, not all of the buffers are fully utilized or
occupied. Network saturation is defined as the load when some
resource in the network is saturated [4]. Thus, even if the network
is saturated, not all of the buffer resources are fully utilized.

To better understand the distribution of buffer utilization, a buffer
utilization histogram of all the buffers in an on-chip network is
shown in Figure 2(b). The y-axis represents the fraction of the input
buffers 2 and the x-axis represents the utilization or occupancy of
the buffers — i.e., what fraction of the buffer entries within a router
input port is currently occupied by packets and not empty. This
data was collected after network saturation and is a snapshot of the
buffer occupancy at a given time. The results show that not all of
the channels (and thus, all of the buffers) are saturated when the net-
work becomes saturated, thereby resulting in a significant portion
of the buffers being not utilized. However, the actual buffers that
are not utilized vary with different traffic patterns and network load;
thus, removing unutilized buffers is not a practical option while re-
ducing the overall buffer space can cause performance degradation,

'Other traffic pattern causes a more imbalance in buffer utilization
while uniform random traffic creates the most random (or load-
balanced) traffic.

?For the routers on the edge of the 2D mesh network, some of the
ports are not connected and we ignore the impact of those buffers
in this work and assume they are always power-gated.

937

2
018 static power
0.16 | ® dynamic power

II

o e -l I

5 15 25 35 45 55 65 75 85 95 0
Buffer utilization (%)

(b)

00001 0005 001 01 02 04 05
Activity factor

Figure 3: Power consumption of
a single router as activity factor is
varied.

as shown earlier in Figure 1. In this work, we propose the use of
fine-grained power gating in on-chip network buffers to exploit the
low utilization of buffers and reduce the buffer leakage power.

As energy consumption is a significant factor in digital systems,
it is not only important to reduce energy consumption, but also to
achieve energy-proportional computing [1] — i.e., use energy pro-
portional to the amount of work done. This concept was origi-
nally proposed in datacenter computing and extended to datacen-
ter networks. In this work, we attempt to achieve similar energy-
proportionality in on-chip networks through better buffer manage-
ment. In Figure 3, we plot the power consumption of an on-chip
network router from Orion 2.0 [8] for a 32nm technology. The
activity factor of the network is varied, and the total power con-
sumption for a 5-port router is shown. At a very low activity factor,
a significant portion (over 95%) of the total power is from static
(or leakage) power. Even for high activity factor, the static power
consumption still represents 50% of the total power consumption.
Thus, it is critical to minimize the number of active buffer entries,
especially when the buffers are not utilized.

2.3 Related Work

The bufferless routers share similar goals to our work, and dif-
ferent bufferless flow control approaches were discussed earlier
in Section 2.1. A low-cost router microarchitecture [9] was pro-
posed to reduce the complexity of on-chip networks by simpli-
fying the router microarchitecture. The size of the input buffers
was minimized while intermediate buffers were required between
the dimension-sliced switches. The techniques described in this
work can be extended to intermediate buffers to minimize their
leakage power. Power-aware buffers [2] were proposed to mini-
mize leakage power, and they described different design spaces of
power-aware buffers. Our microarchitecture can be classified as
predictive according to their terminology [2]. However, they do
not provide details of implementing different power-aware buffers,
and their study focused on large-scale, off-chip networks, whereas
our work focuses on on-chip networks which have different con-
straints [3]. Matsutani et al. [10] proposed ultra fine-grained power
gating where each component in a router is individually managed.
Their work includes the power-gating of buffers but at a granular-
ity of the entire virtual channel buffer, whereas our work uses the
power-gating of each buffer entry granularity.

3. FLEXIBUFFER

We propose FlexiBuffer, which reduces the leakage power by
leveraging fine-grained power gating of buffer entries and, thus,
flexibly manages the size of active buffers. With power-gating,
each buffer entry can be in one of two states: an active or ON
state or a sleep or OFF state. We also define the active window size
within each input buffer of a router as the number of buffer entries
that are active or ON.

51.5

RO ; R1 R2
|
Z T
| credit OB
norm_a_c:e_ i d,?f(}'
b
early credit &
e gef‘/ % %
lac
(2) (b)

Figure 4: Timeline of credit-based flow control with (a) a nor-
mal credit and (b) an early credit.

RO R1
flit_data
congestion n
L) more
credit flit_valid_in D buffer
count early needed
credit i
i local
dir?ta congestion

Figure 5: Block diagram for congestion detection.

3.1 Modified Credit-based Flow Control

Backpressure in the on-chip network is often managed through
credit-based flow control. In conventional credit-based flow con-
trol, credit counts are maintained for the downstream router’s buffers.
For each flit sent downstream, the credit count is decremented.
Once the flit leaves the downstream router, a credit is sent back
upstream to signify to the upstream router that a buffer entry has
become available. We modify credit-based flow control to prevent
any flits being written to OFF entries and, as needed, turn on OFF
entries and increase the number of ON entries.

To support Flexibuffer, we modify the initialization of the credit
count in a conventional credit-based flow control. If a downstream
buffer has b buffer entries, upstream routers initialize their credit
count with a value of b. However, in Flexibuffer, the credit count
is initialized with b,,:n, which represents the minimum number of
active or ON buffer entries needed to prevent stalls caused by the
lack of available buffer entries. The rest of the buffer entries (b —
bmin) are in the sleep or OFF state. The value of b,,;» can be
calculated as

bmin = maw(twakeupa tCTt)y

where t., is the credit round-trip latency and t.akeup i the num-
ber of cycles needed to wakeup a buffer entry. If tcre > twakeups
the twakeup latency is completely hidden in the router microarchi-
tecture.

In addition, we define two different types of credits for our flow
control.

e Normal credit: credit sent upstream corresponding to a flit
that leaves for a downstream router (Figure 4(a)).

o Early credit: credit sent upstream immediately upon receipt
of a flit when congestion is detected. While early credit is
sent upstream and a corresponding flit is sent downstream,
the local router activates (or turns on) another buffer entry
(Figure 4(b)).

According to these definitions, conventional credit-based flow con-
trol only uses normal credit while Flexibuffer also requires early
credit. For an incoming flit, an early credit is immediately sent up-
stream if the following two conditions are met: 1) there are buffer
entries that are in the OFF state (i.e., buffer entries can be turned

938

num. of | early | normal | window description

credits | credit | credit size of condition
0 No No decrease | congestion decreased
1 Yes No same no congestion
1 No Yes same no congestion
2 Yes Yes increase | congestion increased

Table 1: Different combination of credits transmitted in Flex-
iBuffer.

RO R1 R1's input buffer
T0 %
R)
l:ION state L Fl
T2 A5
-OFF state Fl F2
LE] P
777 OFF-to-ON FL|F2| R o
/4 transition state T4 % %
FL| F2 | F3 s
— flit T5 =
DI early credit FL|F2 | F3 | Fa
FL| F2 | F3 | Fa
T7

Figure 6: An example of active window management with early
credit under extreme congestion.

on) and 2) congestion exists in both the current buffer and the up-
stream router. *

For an outgoing flit, a normal credit is always sent except for
when the available number of entries, which must be ON and empty,
is larger than twakeup. To summarize, different types and numbers
of credits can be sent upstream depending on the congestion of the
networks as shown in Table 1. In some case, no credit will be sent
for a given flit if there is no congestion and the current active win-
dow size is greater than the bmin. This condition represents when
congestion exists but is being reduced. Therefore, the active win-
dow size will be reduced and an ON entry will be turned off.

3.2 Congestion Detection

In addition to the modified initial credit count value, the addi-
tional changes needed in the router microarchitecture are the con-
gestion detector in the upstream router and the logic to generate the
early credit signal (Figure 5). To determine how the active win-
dow size has to be changed, an input port control needs to detect
both upstream and local congestion. The upstream router (R0 in
Figure 5) generates a congestion signal if the contention degree for
this particular output is greater than or equal to a threshold value. In
our evaluation, we use a threshold value of 2 —i.e., there is at least
one additional flit that needs to be transmitted from the upstream
router. This congestion signal is transmitted with the flit data to the
current router. The local router (R0 in Figure 5) generates its own
congestion signal depending on whether the front of the queue will
be removed or not. If it is not removed, it indicates congestion in
the current router — i.e., the input port loses arbitration to another
input port. Since early credit is sent only when there is an incoming
flit, indication of incoming flit (flit_valid_in in Figure 5) from
the upstream router is AND’ed with this congestion signal (both
upstream and local congestion signal) to decide if an early credit
needs to be sent. For each early credit sent upstream, an additional
buffer entry is turned on.

3.3 Buffer Window Example

Figure 6 shows an example of how FlexiBuffer works. Trans-
mission of flits (from RO to R1) and credits (from R1 to RO) are
shown on the left, and the occupancy of the input buffer for R1 is

3Discussion of how congestion is determined is discussed in Sec-
tion 3.2.

51.5

[Jonentry [HEN OFF entry I
Data 2 Data 2 Data 2 o 0
hea»d l Data 0 1 c Data 0 1 - Data 3 1: g T 1
N [p_head g% [p_head }[_' Datal |E% [phead Datad |E§ [p_head g 2
AFL head Dl [pai Data 0 J o [l J I X Data 0 J c [l g
Data 1 Data 1 £
2 e Data 6 2 Data 6 J
L1 I——
(2) (b) © (@) ©)

Figure 7: Block diagram of a (a) modified linked-list buffer management (MLL) and split queue (SQ) buffer management in ((b),
(c), and (e)) unified mode and (d) split mode. Usually, SQ is in (b) unified mode and the primary region works similar to a circular
queue. (c) is when the primary region can expand, but in (d), it couldn’t expand and switched to split mode. Later, it will return to
(e) unified mode after primary region is emptied, and the primary region will be set to all ON entries.

cycle i cycle i+x cycle i+x

Data 6

Data 4

Data 0
Data 1
Data 2

Data 4
Data 5
Data 6

[Jonenty
- OFF entry

(@) (b) (©)

Figure 8: (a) Initial buffer occupancy with baseline, buffer oc-
cupancy after x cycles with (b) baseline circular buffer and (c)
an ideal buffer management.

shown on the right. In this example, we assume that RO has four
flits (F1 — F4) and three credits, and byin = 3 and twakeup = 2 are
used as parameters. Initially, while two flits (F'1, F'2) are sent from
RO to R1, no congestion is detected and no early credit is sent. As
aresult, at 73, RO has no credit and cannot send F'4. At the same
time, an early credit is sent upstream and arrives at R0 at 7'4, and
then, RO can send F'4. As denoted by the shaded squares in Fig-
ure 6, while the early credit is sent upstream and a corresponding
flit (F'4) is sent downstream, the downstream router activates an
OFF entry and F'4 can be stored in this buffer entry.

4. BUFFER MANAGEMENT
4.1 Circular Buffer Problem

Buffers are commonly managed as circular buffers with a head
and a tail pointer [4]. After every write to the buffer, the tail pointer
is incremented, and after every read, the head pointer is incre-
mented. When a head or a tail pointer reaches the last buffer entry,
it is wrapped around and points to the first entry. However, using
this buffer management with fine-grained power gating can cause
more power consumption by continuously turning buffer entries on
and off. For example, if we assume an active window size of one
and there is no congestion (i.e., the active window size will not
change), only one buffer will be active at any given cycle. How-
ever, the actual physical buffer entry that will be utilized will con-
tinuously change. As a result, although inactive buffer entries will
continue to be in the OFF state, additional power overhead is re-
quired to turn buffer entries on and off when logically, only one
buffer entry is actually being utilized.

An example of circular buffer management is shown in Figure 8.
Current buffer occupancy is shown in Figure 8(a) with three buffers
in the ON state and the rest of the buffer entries in the OFF state.
Assuming the traffic load is constant and no additional congestion

939

occurs in the network, at x cycles later, the head and tail point-
ers would have incremented such that three different buffer entries
will have been turned on while the previous three buffer entries are
turned off (Figure 8(b)). Although this still maintains the maximum
number of buffer entries in the OFF state, it requires continuous ac-
tivation and deactivation of buffer entries. Instead, an ideal buffer
management would attempt to reuse the same physical buffer en-
tries, as shown in Figure 8(c). To overcome this limitation with the
circular buffer management, we propose two buffer management
mechanisms, extending a conventional linked-list based approach
and a novel, split queue organization.

4.2 Modified Linked-List (MLL) Buffer Man-
agement

In conventional linked-list based buffer management [4], there is
a head and a tail pointer which point to the front and end of the log-
ical FIFO queue, respectively, and each buffer entry has a pointer to
the next buffer entry. A free pointer also exists that is used to keep
track of free buffer entries. This baseline linked-list buffer man-
agement manages the buffers as a circular queue. To overcome the
problem of excessively turning on and off buffer entries, additional
head and tail pointers are used to differentiate between an active
free list (AFL) and a sleep free list (SFL) (Figure 7(a)).

Initially, b.,:,, entries are in the active state and present in AFL.
As flits arrive and get buffered, entries from the AFL are popped
and transferred to the linked list. When flits depart from the buffer,
the buffer entry is added to the SFL if the entry is turned off; oth-
erwise, the buffer entry is added to the AFL. Only when the active
window size needs to be increased is an entry popped from SFL and
pushed back to AFL. While an entry is being woken up and transi-
tions from the sleep state to active state, modified credit-based flow
control will prevent any flits being written on this entry. To manage
both AFL and SFL, separate head and tail pointers are needed for
each list in addition to the linked list’s head and tail pointers.

The modified linked-list approach provides an efficient mecha-
nism to manage buffers, as each entry can be properly managed.
However, additional complexity is introduced, as a multi-ported
register file is needed to allow simultaneous access. In addition,
each buffer entry has storage overhead for the pointer, and these
additional bits cannot be power gated.

4.3 Split Queue (SQ)

To overcome the limitation of the modified linked-list approach
and simplify buffer management, we propose a novel split queue
organization. The buffer is separated into two regions — the pri-
mary and secondary region. There is a boundary pointer that sep-
arates the two regions and points to the last entry of the primary
region. Each region has its own head and tail pointers, and sim-

51.5

®
o
®
S

—9—baseline
— FlexiBuffer + SQ
----FlexiBuffer + MLL

D
o
o
=]

N
o
N
(=}

Average packet latency (cycles)
5

Average packet latency (cycles)
s
o

o
o

o
o

0.1 0.2 0.3 0.4
Injection rate (flits/cycle/node)

0.1 0.2 0.3
Injection rate (flits/cycle/node)

(@ (b)

Figure 9: Performance comparison of baseline and FlexiBuffer
for (a) uniform random and (b) tornado traffic pattern.

ilar to other buffer management schemes, they point to the logical
beginning and end of the buffer that is currently being occupied,
respectively. With these two regions, the split queue can operate
in either a unified mode or a split mode. In the unified mode, only
the primary region is used while in split mode, both regions are
utilized.

Initially, a buffer is in unified mode and has b,,i», active entries in
the primary region as buffer entries labeled O to b,,,i,, — 1 are in the
active state. The pointers for the secondary region (s_head, s_tail)
are not used in the unified mode. If there is no congestion, the
bmin active entries in the primary region operate as a circular queue
and flits are written and read from the primary region as shown in
Figure 7(b). However, as the size of active window increases (or
additional buffer entries need to be turned on), the buffer either
remains in a unified mode or switches to a split mode, depending
on the location of the p_head and p_tail pointers.

If p_head < p_tail (i.e., the buffer entry ID * addressed by
p_head is smaller than the buffer entry ID addressed by p_tail
as shown in Figure 7(c)), the buffer remains in the unified mode
and the size of the primary region increases downwards as more
buffer entries are needed. Since the buffer continues to remain in
the unified mode, the boundary buffer is also increased appropri-
ately. However, as congestion decreases and the active window size
needs to be reduced, the boundary pointer is incremented to reduce
the size of the primary region. If the buffer entry being pointed
to by the boundary pointer is occupied, the active window does
not shrink immediately but needs to wait until the data flit is re-
moved from the buffer. However, if p_head > p_tail as shown in
Figure 7(d), extending the primary region downwards will compli-
cate the pointer management. Since the buffer is logically a FIFO
with packets being read out in the order that it was written, contin-
uing to increase the primary region when p_head > p_tail would
require multiple head and tail pointers to properly manage the or-
der of flits — or pointers similar to linked list, since the last entry
of the primary region will need to point to the first entry of the
secondary region. To avoid this complex pointer management, we
change the buffer from unified mode to split mode and buffers in
the secondary region are turned on, one by one as needed. The size
of the two regions are fixed in the split mode to avoid complicating
pointer management and the secondary region pointers are initial-
ized to s_head = s_tail = boundary + 1. Once the primary
region is full, the additional flits are written into the secondary re-
gion. The flits are first read out from the primary region and once it
has been drained, the flits from the secondary region are read out.
In addition, once the primary region is drained, the buffer switches
back from split mode to unified mode (Figure 7(e)), and the ON en-
tries in the secondary region are added to the primary region. The
secondary region shrinks accordingly and the boundary pointer is

“The buffer entry ID is shown on the right in Figure 7.

940

@
3

~
S

~

=]

@
S

@

3

Overall average active window size

¥ 35| TR
)
§ 40| Overall average buffer utilization @ a0l Overall average active window size
5 e z Overall average buffer utiization
5 30 £ 30 ¥
@ a
20 20
10 10
0
0 4 8 0 2 4 6 8
Time (cycle) x10° Time (cycle) x10°
(@) (b)

Figure 10: Average active window size with (a) uniform ran-
dom and (b) bursty traffic patterns.

established again between the two regions. One limitation of the
split queue design is that while the primary region is being drained,
no additional flits can be written to this region and thus, the active
window size is effectively reduced until the buffer returns to the
unified mode.

5. EVALUATION

In the evaluation , we used a cycle accurate simulator [4] and
evaluated FlexiBuffer on a 8 x8 2D mesh topology using dimension-
ordered (XY) routing with b = 8, v = 4 (number of virtual chan-
nels), and an aggressive single-cycle router and twakeup = 2 pa-
rameters. The leakage power of the alternative microarchitectures
is estimated using Orion 2.0 [8]. We modified Orion2.0 such that
reduction of buffer leakage power and the overhead of turning on
OFF entries are taken into account when the power consumption
is calculated. We assumed 32nm technology with 1.5 GHz clock
frequency, 1.0V VDD, and a register file implementation of the
buffers. The energy overhead of turning on a buffer entry is as-
sumed to be equivalent to the leakage power savings of turning off
a buffer entry for 10 cycles [6].

5.1 Performance

Performance of FlexiBuffer with modified linked-list (FlexiBuffer
+MLL) and split queue (FlexiBuffer+SQ) implementations are com-
pared with baseline router microarchitecture which does not have
any power gating. As shown in Figure 9, there is minimal loss
in performance, approximately only 3% degradation in throughput
while the same zero-load latency is achieved. By maintaining an
active window size of by,in, there is minimal loss in throughput
while obtaining a significant benefit in reduction of power (Sec-
tion 5.2). The results in Figure 9 are shown for only two particu-
lar traffic patterns (uniform random and tornado traffic) but results
for other traffic pattern also follow similar trend — minimal loss in
throughput for FlexiBuffer compared to the baseline microarchitec-
ture.

With steady-state traffic patterns, the active window size remains
relatively constant throughout the simulation. For example, the ac-
tive window size (and the actual buffer utilization) for uniform ran-
dom traffic at an injection rate of 1.0 is shown in Figure 10(a). The
values in Figure 10 are averaged across all the router buffers in the
network. Both the buffer utilization and the active window size re-
mains relatively constant since the traffic rate or the traffic pattern
does not change. Thus, in addition to steady-state traffic pattern, we
also evaluated a bursty traffic pattern [4]. The latency-throughput
curve trend comparison for the bursty traffic also follows similar
trend as shown in Figure 9 but the active window size changes as
shown in Figure 10(b). As the traffic load changes, the active win-
dow size increases or decreases to adapt flexibly to the network
load.

51.5

‘+baseline -+ - FlexiBuffer(baseline) — FlexiBuffer + SQ —*—FlexiBuffer + MLL‘
@
4]
= . F
£ 1 é 1
% os 2 os : :
E . 3 o
> 5 &
806 . . 5506 . .
£ g3
> €
% 0.4} 2 S04
B ——, 3
5§02 g 02
g 2 e e
w0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Injection rate (flits/cycle/node) Injection rate (flits/cycle/node)
() (b)

Figure 11: (a) Fraction of active empty entries across all the
buffers and (b) average number of entries activated for each
flit is shown for uniform random traffic pattern.

5.2 Leakage Power Reduction

As described earlier in Section 2, significant number of buffer
entries can be empty, even at high load, and results in high leakage
power consumption. FlexiBuffer minimizes this by using power
gating to turn off unused buffer entries.

Figure 11(a) shows the fraction of active or ON buffer entries that
are empty and not occupied by a flit. With the baseline microarchi-
tecture, at low load, most of the buffers are not being occupied and
thus, this fraction approaches one. Even at high load (near sat-
uration), a significant portion of the buffers (approximately 70%)
is still empty but in an active or ON state since no power gating
is used. In comparison, split queue reduces the number of active
empty buffer entries by approximately 63% near zero-load and by
approximately 54% at high load. As a result, the average leakage
power of buffers is reduced by 61% near zero-load, and 36% at
high load as shown in Figure 12(a). Compared with split queue
(SQ), the modified linked-list (MLL) consumes 15% more leakage
power near zero-load, because of its storage overhead by pointers,
which cannot be power-gated. However, the modified linked-list is
able to further reduce leakage power at high load (by 12%) because
it does not have the limitation of split queue, where entries in the
primary region cannot be turned off in split mode.

In addition to the reduction in the number of buffers that are
turned off, we compare the number of times that flit buffer entries
are unnecessarily turned on. In Figure 11(b), we plot the average
number of buffers that needs to be activated for the arrival of each
flit. Ideally, this value should be close to zero as a value of one
means that for the arrival of every flit, another buffer entry needs
to be turned on. For the baseline circular buffer approach, number
of times buffer entries are turned ON for each flit is approximately
one at low load since new physical buffer entries need to be acti-
vated with a circular buffer organization. In comparison, both the
MLL and the SQ approach have a value near zero at zero-load and
only reach a value of approximately 0.1 at saturation. Unlike circu-
lar buffer organization, only few buffer entries need to be activated
with both MLL and SQ as the same physical buffer entries in the
active window are reused. Based on the advantages of the new
flow control and the split queue organization, the energy consump-
tion with FlexiBuffer is shown in Figure 12(b). Compared with
the baseline, FlexiBuffer is shown to achieve energy savings of ap-
proximately 39% at low utilization and approximately 13% at high
network traffic load.

6. CONCLUSIONS

In this work, we showed how not all on-chip network router
buffers are fully utilized, and they provide an opportunity to turn-
off the buffer entries to minimize leakage power. We proposed
FlexiBuffer, a flexible and adaptable buffer management that lever-

941

51.5

—=—baseline — FlexiBuffer + SQ —« FlexiBuffer + MLL

0.08 025
B
B ~ 02
§0.06 g
B =
S £ 0.15
g
£0.04 ey
% g
2 3 0.1
H 0.02 z
S = 0.05
>

00 0.2 0.4 0.6 0.8 1
Injection rate (flits/cycle/node)

o
o

. .4 0.6 0.8 1
Injection rate (flits/cycle/node)

(a) (b)

Figure 12: (a) Leakage power consumption of a VC buffer and
(b) total router power are compared as injection rate is varied
with uniform random traffic pattern.

ages fine-grained power gating to adjust the number of active buffer
entries in each router. We modified credit-based flow control by
introducing early credits to adjust the active window size of the
buffer appropriately. We also identified how circular buffer man-
agement creates a significant problem as different physical buffer
entries need to be continuously turned on and off. To overcome this
limitation, we proposed a novel split queue organization that allows
the same physical buffer entries to be reused. Our results show that
with minimal loss in performance, FlexiBuffer can reduce the leak-
age power consumption of on-chip network buffers by up to 61%.

7. REFERENCES

[1] L. A. Barroso and U. Holzle. The case for

energy-proportional computing. Computer, 40:33-37, 2007.

[2] X. Chen and L.-S. Peh. Leakage power modeling and
optimization in interconnection networks. In Proc of the
international symposium on Low power electronics and
design, pages 90-95, Seoul, Korea, 2003.
W. J. Dally and B. Towles. Route packets, not wires: on-chip
inteconnection networks. In Proc. of the Design Automation
Conf (DAC), pages 684-689, Las Vegas, NV, 2001.
W. J. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann, San
Francisco, CA, 2004.
M. Hayenga, N. E. Jerger, and M. Lipasti. Scarab: a single
cycle adaptive routing and bufferless network. In Proc of
IEEE/ACM International Symp. on Microarchitecture
(MICRO), pages 244-254, New York, NY, 2009.
Z. Hu, et al, Microarchitectural techniques for power gating
of execution units. In Proc. of international symposium on
Low power electronics and design, pages 32-37, Newport
Beach, CA, 2004.
S. A. R. Jafri, Y.-J. Hong, M. Thottethodi, and T. N.
Vijaykumar. Adaptive flow control for robust performance
and energy. In Proc. of IEEE/ACM Intl Symp. on
Microarchitecture, Atlanta, GA, 2010.
A. Kahng, B. Li, L.-S. Peh, and K. Samadi. Orion 2.0: A fast
and accurate noc power and area model for early-stage
design space exploration. In Proc of Design Automation and
Test in Europe (DATE), Nice, France, 2009.
J. Kim. Low-cost router microarchitecture for on-chip
networks. In Proc. of IEEE/ACM Intl Symp. on
Microarchitecture, pages 255-266, New York, N, 2009.
H. Matsutani, et al, Ultra fine-grained run-time power gating
of on-chip routers for cmps. In Proc of International Symp.
on Networks-on-Chip (NOCS), pages 61-68, 2010.
G. Michelogiannakis, D. Sanchez, W. J. Dally, and
C. Kozyrakis. Evaluating bufferless flow control for on-chip
networks. In Proc of International Symp. on
Networks-on-Chip (NOCS), pages 9-16, 2010.
T. Moscibroda and O. Mutlu. A case for bufferless routing in
on-chip networks. In Proc. of the Intl Symp. on Computer
Architecture (ISCA), pages 196-207, Austin, TX, 2009.

(3]

(4]

(6]

(7]

[9]

(10]

[11]

[12]

