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Abstract- 
Using virtual output queueing(VOQ), maximum matching scheduling sl- 

gorithms have been shown to achieve 100% throughput in input-queued 
switches, but has high complexity such that implementation is infensible for 
high-speed systems Iterative maximal matching algorithms, proposed as 
an allemative, cannnt run L r  more than B few iterations due to the hard- 
ware complexity involved, fhus resulthg in low throughput. In this paper, 
we intruduce a starvation-free iterative maximal matching algorithm called 
Highest Count First (iHCF). The iHCF algorithm gives preferential service 
based on l h c  approximate age of the head-of-line cell in a VOQ and maxi- 
mizes the size of the matching using round-robin priority pointers. We show 
that iHCF can a&ieve 100% throughput under Ll.d and uniform t M c  in 
a single iteration. We also show using simulations that it performs as well as 
other known practic-al algorithms and achieves 100% throughput when run 
for only a few iterations under dif'ferent admissible traflic patterns Com- 
pared to other algorithms, iHCF lends lo a low complexity architecture such 
that the scheduling does not become the bottleneck. 

I. INTRODUCTION 

The exponential growth of multimedia applications and the 
popularity of World Wide Web has dramatically increased the 
amount of traffic carried over today's high-speed backbone net- 
works, As a result, there is great demand for high-speed, 
high-aggregate bandwidth switches and routers. A high perfor- 
mance switch is needed to take data arriving on an input link 
and quickly deliver i t  to the appropriate output link. Output- 
Queued (OQ) switches are known to provide an optimal delay- 
throughput performance and even quality-of-service(QOS)[ 13, 
for all traffic distributions, but requires the buffer memories 
to run N' times faster than the line rate. Input-Queued(IQ) 
switches replace the centralized shared memory by maintaining 
separate queues at each input of a crossbar fabric, each of which 
runs at the line rate. However, head-of-line (HOL) blocking is 
well known to limit the throughput of input-queued switches 
to approximately 58.6% [2], under the most benign conditions: 
i.i.d and uniform traffic. This problem can be overcome by 
using Virtual Output Queues (VOQs) but requires a schedul- 
ing algorithm to schedule cell transmission across the switch- 
ing fabric. It has been shown that a scheduling algorithm that 
uses a maximum size bipartite matching algorithm can increase 
the throughput from 58.6% to 100% when the traffic is uniform 
and independent. However, for non-uniform traffic, maximum 
size matching has its limitation[51. Maximum weight matching 
algorithms have been shown to achieve 100% throughput un- 
der non-uniform traffic for independent arrivrtls[5]18 1.  However 
maximum size and maximum weight matching algorithms are 
complex to implement and iterative matching algorithms are of- 
ten used in practice. 

' N  is the number of switch ports 

In this paper, we propose a new iterative weighted matching 
aIgorithm iHCF (Highest Count First) which uses weights based 
on the waiting time of the HOL cells. The weights are approxi- 
mated by having counters at each VOQ. The algorithm provides 
high throughput and performs well on a wide range of traffic 
pattems in only a few iterations. We also present a low com- 
plexity implementation, similar to SLIP, which leads to faster 
scheduling. 

The paper is organized as follows: In Section 11, we dis- 
cuss other h o w n  matching algorithms used for scheduling IQ 
switches. We describe iHCF and its properties in Section 111. 
In Section IV, we compare it to other practical algorithms, both 
in terms of hardware complexity and throughput performance. 
Finally, we provide a variation to the algorithm in Section V 
which overcomes some of the limitations and we conclude in 
Section VI. 

11. RELATED WORK 

Most practical algorithms that are fast and simple to imple- 
ment in hardware approximate a maximum size matching algo- 
rithm by a maximal size matching, e.g. PIM I31, SLIP [41 and 
DRRM [9]. These algorithms perform well on uniform traffic, 
but in reality traffic is not uniform. Queues with heavy traffic 
can overflow while ones with light traffic are empty most of the 
time and limit the throughput. A maximum size matching algo- 
rithm does not consider queue lengths, and hence cannot prevent 
queue overflow. 

It has been proven that by using a maximum weight match- 
ing algorithm, 100% throughput can be reached for independent 
arrivals: Longest Queue First (LQF)[5] and Oldest Cell First 
(OCF)[8]. The weight of the edge wi,j, from input i to output j 
is a measure of the level of congestion, e.g. the length of queue 
or the age of its oldest packet. However, implementing these 
maximum matching algorithms is infeasible for high-speed sys- 
tems due to the large number of multi-bit comparators required 
[4] [8], and its 'O(N310gN) run-time complexity (scheduling 
delay). Recently. the Longest Port First(LPF)[7] algorithm was 
proposed to overcome the complexity of LQF, which removes 
the comparators from the critical path. However for practi- 
cal implementations, heuristic approximations of maximum size 
matching (e.g. iSLP) are often used[8]. In fact, iterative max- 
imal matching algorithms have been proposed as a practical al- 
ternative to the above-mentioned algorithms[7][8]. When run to 
completion, they produce a maximal matching. However even 
in these iterative alternatives, the complexity of the implemen- 
tation limits the cycle time (i.e. the time to run 1 iteration) and 
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repeat 
Request phase: 
1. Each unmatched VOQ with a HOL cell sends request to its output 
2. Corresponding VOQ counter increments by 1 

Grant phase: 
1. Fach unmatched output grants the input requesting with the high. 
est counter vdue 
2. TICS are broken randomly or based on praority 

Accept phase: ’ 
1. Each input accepts the output grant with the highest corresponding 

VOQ counter value 
2. Ties are broken rundomly or based on prior@ 
3. Each matched VOQ has its counter resetted 

until 3Qij with WOL cell where ,i and j are both unmatched 

Fig, I .  The three-phase iHCF algorithm with multiple iterations 

hence the number of iterations. Thus, it becomes costly to allow 
the mathcing algorithms to run to completion. 

111. T H E  iHCF ALGORITHM 

A. Algorithm Overview 

The W F  algorithm has been designed to be an approxima- 
tion to iOCF but with complexity similar to iSLIP. Like other 
iterative algorithms, it is composed of three phases: Request, 
Gram and Accept, as illustrated in Figure 1. Unlike IOCF, iJKF 
maintain weights by tracking the waiting time of only the HOL 
cells in each VOQ. It does so by using a counter, uoq-cntrij, 
to count the number of times each VOQ, Q i j ,  makes a request 
from inpui i io output j .  Grants for an output j are made by 
giving preferential service to inputs with the highest woq-cntrij 
value. Simitarly, an input i accepts a grant and forms a match- 
ing by giving preferential service based on the counter values of 
the VOQs with grants. Ties in either phase can be broken ran- 
domly or in a round-robin manner. Once accepted in a match- 
ing, voq-cntrij is reset to 0. Since the voq-cntrij s are reset on 
getting served, each vq-cnh-ij eventually becomes the highest 
count. ‘hus  every VOQ QiJ will be eventually matched and the 
algorithm will prevent starvation. 

By considering only unmatched inputs and outputs, each iter- 
ation only increases the size of the matching. Thus iHCF con- 
verges to a maximal matching in at most N iterations, which is 
an approximation to the maximal weight matching produced by 
OCF. An example of the algorithm is shown in Figure 2. 

B. Ties 
The size of a matching generated by an iterative matching 

algorithm is constrained by tieskollisions at outputs and in- 
puts, during the grant and accept phases respectively. Since 
iHCF grants and accepts on a preferential basis, ties can only 
occur when there are multiple VOQs with their corresponding 
voq-cntrijs having the same highest count. Amongst the con- 
tending VOQs for an output j only one VOQ Q ; j  is granted, 
whose voq-cntrij is resel when accepted for a match. More- 
over, it is the only counter at input i that gets reset. This makes 

Fig. 2. Example of iHCF algorithm. Similar to the iSLlP atgorithm. the priority 
pointers are only updated when the grant is accepted. is accepted. For the 
IHCF, there is an additional requirement that the priorir): pointer does MI 
get updated if there were no lies. i.e. if the priority painter is not used to 
determine the winner. 

the voy-cntl-ij de-synchronized from other contending counters 
at input i and outputj, reducing the chance to clash again. Thus, 
ties can only occur when new cells arrive into empp VOQs, 
which is rare under heavily loaded traffic‘. 

When ties do occur, ties can be broken in different ways. Ran- 
domly breaking ties, as in PIM [3], could lead to unfair band- 
width allocation [6] and are an order of magnitude more com- 
plex to implement than iSLIP. We show in Section IV that using 
randomness to break ties result in poor performance for iHCE 
The priority pointers, like in BLIP, help to desynchronize the 
input and output arbiters into a round-robin schedule, thus pre- 
venting any VOQ from getting starved and converging quickly 
to a maximal match and achieving higher throughput. We bor- 
row this idea of pointer slipping for iHCF, by keeping a pointer 
at each input and output with rotational priority to break ties: 
1: 

2 

3: 

C. 

ties are broken in favor of the one that appears next in a 
fixed, round-robin schedule starting from the highest prior- 
ity element; 
input pointers are incremented (modulo N )  to one location 
beyond the accepted output, only in case of ties; 
output pointers are incremented (modulo N )  to one location 
beyond the granted input, only ifthe grant was accepted. 

iHCF Counrers 

A main component in the iHCF algorithm are the counters: 
voq-cntrij s. In order for iHCF to be a practical algorithm, the 
voq-cntrij s can only be allowed to count to a certain maximum 
value(MAX-CNT). The size of the counter, i.e. number of 
bits, in-tum determines the size of the comparator in the input 
and output arbiters. 

With iHCF, the maximum HOL waiting time for a cell is N 2  
slots since in the worst case, due to ties, only a single edge 
is matched in every iteration. Since the counter for an un- 
matched edge increments every time-slot, it will become the 
highest count in N2 time-slots while each of the other VOQs 
are served and their corresponding counters reset. As a result, 
the woq-cn,trijs need to count to a maximum value of N 2 ,  and 
hence require at most 2 log(N)  bits. However, as later shown in 
Section IV, optimal results are obtained when the counters are 
only N bits wide. 

2When acq-ntri3 is bounded, ties can also occur when the counters reach 
the maximum value. 

0-7803-8924-7/05/$20.00 (c>ZOOS IEEE. 69 



Fig. 3.  Performance Comparison on Uniform Random Traffic for Switch Size of 
16 with 1 iteration (a) iHCF algorithm and I& variants (b) iHCF comparison 
to other algorithm 

If the counters are 1-bit wide. every non-empty VOQ coun- 
ters will be tied and hence, it is easy to observe that iHCF will 
behave exactly like SLIP. Using the iHCF algorithm with a 
saturating counter, whose MilX-CNT is less than N ,  100% 
throughput can also be achieved for uniform random traffic. Due 
to space constraint. the proof is not shown but it also approaches 
the behavior of S L I P  at high loads. 

IV. COMPARISON 
A. Pergcormance Resttiis 

The following simulations were done using SIM[lO] and 
modified to impIement our algorithms. We compare the algo- 
rithms for only a single iteration unless otherwise noted. Note 
that iterative maximal matching algorithms may not Tun to corn- 
pletion in a single iteration. 

A. 1 iHCF algorithm peiformance 

its following variants under uniform traffic load: 
1. with unbounded counters 
2. with saturating counters and random breaking of ties 
3. with saturating counters and round-robin tie breaking 

For the saturating counters, the counters were set to log(A') 
bits. The results are compared in Figure 3(a). iHCF using 
unbounded counters does not provide 100% throughput, while 
using saturating counters and breaking ties in a round-robin 
manner does. Breaking ties randomly does not provide 100% 
throughput due to the same reason as PIM[3] and provides lim- 
ited throughput in a single iteration. All subsequent simulation 
of iNCF refers to the third implementation which uses saturating 
counters and breaks ties in a round-robin manner. 

We first compare the performance of iHCF (1 iteration) and 

A.2 Ungom Trafic 
To evaluate the performance of HCF, it is compared to the 

following practical algorithms: iOCF, iSLIP, and iLPF. The 
OCF algorithm is also shown as it uses maximum weight match- 
ing algorithm scheduling algorithm and provides a theoretical 
bound on an algorithm we are trying to approximate. 

The performance under uniform random traffic is shown in 
Figure 3(b). As expected, the iSLIP algorithm performs well but 

output 1 - 
output 2 - 

v -  

Fig. 4. Non-uniform Traffic Pattern where input 1 and output 1 are the hot spot. 
Eve- input sends traffic to output 1 and input 1 sends traffic to every output 

other iterative algorithms such as iOCF and iLPF do not provide 
good throughput with only a single iteration. iHCF, on the other 
hand, provides 100% throughput and lower latency at interme- 
diate loads (between 0.4 and 0.61, but higher latency at higher 
loads compared to SLIP. At the intermediate loads, iHCF pro- 
vides better latency because it takes into account the weights 
approximated by the counters. At higher loads, it has longer la- 
tency because it takes longer to desynchronize the counters with 
the help of the round-robin pointers; where as in ISLIP, only the 
round-robin pointers need to desynchronized to behave like time 
division multiplexing at heavy loads. 

A.3 Non-uniform Traflc 

Beside the uniform traffic pattern, we simulate two non- 
uniform traffic pattems. The first non-uniform traffic pattern is 
a synthetic workload used in 1x1, a traffic pattern that is known 
to perform poorly with ISLIP: 

A = 0 0.5 0.5 1:: :: *oj 
The results of this traffic pattern are shown in Figure 5(a). The 

SLIP algorithm only provides a throughput of approximately 
70% and even iOCF performs poorly. Both iLPF and iHCF per- 
form well and give 100% throughput. 

Even though the above traffic pattern is non-uniform, the to- 
tal traffic to each input and each output are identical. To test the 
algorithm with a different traffic pattern, a non-uniform traffic 
pattern shown in Figure 4 is used which represents a hot-spot 
traffic [8], e.g. input 1 and output 1 represent the hot spots 
which have more traffic than the other input and outputs. Be- 
cause iHCF only considers the ROL cells, we expect this traffic 
pattem to be one of the adversarial traffic pattems since only a 
few VOQs are stressed. 

As shown in Figure 5(b), although iHCF does provide 100% 
throughput, i t  results in higher latency compared to iOCF and 
iLPE This is mainly because iHCF does not consider the length 
of the queue but just the HOL waiting time. However, because it 
does consider HOL waiting time, it still provides better latency 
than iSLIP. 

B. Cotnplexify Comparison 
As stated earlier, iHCF is a heuristic for iOCF and the block 

diagram for its implementation is very similar to that of iOCF 
which is described in [8]. However, some of its complexity ad- 
vantages over iOCF are: 
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Fig. 5. Performance comparison on (a) non-uniform traffic pattem and (b) hot- 
spot non-uniform traftic pattern of figure 4 

are broken in a round-robin fashion, similar to the SLIP  algo- 
rithm with a programmable priority encoder. This block dia- 
gram resembles the iSLIP implementation which is known to 
make fast scheduling decisions. Instead of the requests feed- 
ing directly to an iSLIP arbiter, the request is fed to the ar- 
biter only if the weight(vop-cntrij) matches the highest value 
amongst all the iroq-cntrij’s for a given input .i or a given out- 
put 4: high-count. If there is only one voq-cntrij that matches 
the highest value (i.e. there are no ties), the S L I P  arbiter can 
be bypassed. Thus, the only delay added to the SLIP hard- 
ware implementation is the delay through one counter and two 
single stage comparators. From our estimations, this new logic 
will add less than 10% to the SLIP  delay, which is significantly 
smaller than the scheduling time required for iOCF or iLPF. 

This implementation takes advantage of the fact that the high- 
est counter value, Itigh-count, used in the comparators can be 
predicted by making the following observations: 

if high-count is MAX-CAT, but is not granted, it remains 
at MAX-GhTT 

if there was a tie OR if the output was not granted, then 
high-count = high-cant  + 1 

if there was no tie and the output was granted, the predicted 
value of high-cmrtt will be the previous high value incre- 
mented by 1. 

To determine the previous highest value, a comparator is still 
needed, but it is no longer part of the critical path and has no 
impact on the delay of the scheduling. The same technique used 
in iHCF can not be applied to the iOCP algorithm since after the 
VOQ is served, the weight of the next cell cannot be predicted. 

Fig. 6. Block Diagram of iHCF algorithm to reduce critical path. The 
uoqmtrij  we duplicated for illustration purpose. The outlines box shows 
the logic which replaces the comparator on the critical path. The compam- 
tors, not show in the figure, ace used fo calculate the highest two d u e s  
such that if the input is ganted and there were ho ties, the second highest 
value will be used as hzghamnt in the subsequent cycle. 

1. The width of the comparators is significantly reduced since 
weight is the size of the counter, which is approximately log( N )  
instead of log(L) where N is the number of switch ports and L 
is the length of the queues. 
2. Each input only needs to send a single bit request instead of 
Eog( L )  bits which is needed in iOCE 
3.  The weight of only the BOL cell needs to be maintained in- 
stead of the weight of all the cells in the queue. 

In spite of these simplifications, the overall benefit is still 
minimal as the critical component, the comparators which was 
shown to consume approximately 88% of the delay [SI still re- 
main on the critical path. Although our algorithm has reduced 
some of the complexity, the depth of the comparators, which is 
proportional to the switch size, has not changed. Another prob- 
lem with this implementation is that ties among the weights are 
broken randomly which has been shown earlier to result in poor 
performance. 

To overcome the complexity challenges mentioned above, we 
present a new implementation shown in Figure 6. This imple- 
mentation removes the comparator from the critical path and ties 

V. iKCF VARIANT FOR UNBALANCED NON-UNIFORM 
TRAFFIC 

In section IV-A.3, we considered non-uniform traffic patterns 
which balances the load across different inputs. In this section, 
we show how iHCF does not perform well on traffic patterns 
where the load is not balanced across the inputs. As an example, 
we modify the traffic pattern shown in Figure 4 such that each 
input has a hot output, with a fraction p of cells from an input 
destined to its kor output, and other fraction of cells (1 - p )  uni- 
formly destined to other outputs. This is the same trdfic pattern 
used in 191. As shown in Figure 7, iHCF with even 4 iterations 
performs poorly. 

iHCF is an attempt to approximate the waiting time of a 
cell. However, it only considers the HoL waiting time(WH,,), 
whereas the total waiting time (Wtolai) is 

The waiting time behind other cells (Wpueuing) can be ap- 
proximated by the queue length of the VOQ when the cell 
reaches the head of the Since at most one new 
cell arrives, and hence increases the queue length, during each 
time slot the cell waits behind other cells, 

is different from L which represents the total queue length. Lqueve 
represents the instantaneous queue length when the ceH reaches the head of the 
queue 
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Fig. 7. iHCF algorithm variani with counters for queue length. Hot spot traffic 
with p = 0.8 is used. 

Thus, the total delay can be approximated as 

Wtotatal = W H O L  + Lpueue 

We account for this by resetting the voy-cntrijs to the queue 
length(Lque,,) when they get served. As shown in Figure 7, 
with this new weight, iHCF achieves 100% throughput under 
th is traffic pattern in couple of iterations and behaves similar to 
OCF when run for higher number of iterations. The only added 
complexity from this variation is another set of counters that is 
required to count the queue length. The prediction mechanism 
of Section IV-B is still applicable since if the VOQ is served, the 
predicted value will be the queue length counter incremented by 
one. Since the voq-cntrij need to be reset to the queue length 
counter vaIue, both of the counters need to be of the same size. 
Simulations show that counters of width 2 l o g ( N )  bits are suffi- 
cient to provide good performance. 

VI. CONCLUS~ON 
The scheduler of an input-queued switch needs to provide 

good performance on a wide range of traffic patterns, yet re- 
main simple for it to be implemented in a high-speed switch. 
In this paper, we presented a new algorithm IHCF, highest count 
first, which is a starvation-free maximal matching algorithm and 
performs well on all types of traffic patterns. Compared to other 
known algorithms which take into account the age of the cells 
as weights, iHCF provides a simpler implementation and bet- 
ter performance with only single iteration. iHCF incurs higher 
latency than iLPF, but still manages to achieve 100% through- 
put and the complexity is much simpler than iLPF. Compared to 
other well-known simple algorithms such as ISLIP, iHCF per- 
forms better on non-uniform traffic pattern with minimal addi- 
tional complexity and yet maintains 100% throughput on uni- 
form traffic. 

By adding another set of counters, a variation to iHCF was 
also introduced which can handle traffic patterns that are not 
balanced across the inputs and the outputs. As part of future 
work, funher analysis of the MCF algorithm is needed to see if 
the variant proposed for iHCF in Section V can be theoretically 
proven to provide 100% throughput on all admissible traffic pat- 
terns. There are also orher variants of the algorithms that can be 
investigated if different objectives of the scheduler is needed. 
For example, in the algorithm that we presented, all counters 

were assumed to be identical and behaved identically. How- 
ever, by changing the individual counters such that they saturate 
at different values or by incrementing them by different values, 
preferential service can be given and QOS can be implemented. 

REFERENCES 
[l] Demers, A., Keshav, S., Shenker, S. “Analysis and sinlulatian of a fair 

queueing algorithm”, Jaurnol of Internetworking Researt-h arid Enperi- 
ewe,  pp 3-26, Oct. 1990. Also in Proceedings of ACM SIGCOMII.1’89, 
pp 3- 12. 
Karol, M.. Hluchyj, M., Morgan. S. “Input versus output queueing on a 
space division switch”, IEEE Trans. on Conimunicoriom, vol. 35, n. 12. 
Dec. 1987, pp. 1317-1356. 
Anderson, T.; Owicki. S.: Saxe, J.: and ”hacker. C. ”High speed switch 
scheduling for local area networks”, ACM Trans. on Computer Systems. 
Nov 1993 pp. 319-352. 
McKeown, N. “Scheduling Algorithms for Input-Queued Cell Switches”. 
PhD Thesis, University of California at Berkeley, May 1995. 
McKeonn, N., Mekkittihl, A., Anantharam, V., Walrand. J. “Achievine 
100% throughput in an input-queued switch”, IEEE Trans. on Communi- 
corions, vol. 47. n. 8, Aug. 1999, pp. 1260-1267. 
McKeown, N., Anderson, T. “A Quantitative Comparison of Scheduling 
Algorithms for Input-Queued Switches”, Computer Networks and ISDN 
System. Vol30, No 24, pp 23092326, December 1998. 
Mekkittihl, A., McKeown. N. ”A Practical Scheduling Algorithm to 
Achieve lOOin Input-Queued Switches”, IEEE lnfocom98, Vol2, pp. 792- 
799, April 1998, San Francisco. 
Mekkittikul, A. ‘‘Scheduling Non-uniform Traffc in High Speed Packet 
Switches and Routers”, PhD Thesis, Stanford University, November 1998. 
Li. Y., Panwar. S., Chao 1. “On the performance of a dual round-robin 
switch’, lEEE lnfocom’2001, vol. 3, April 2001, pp. 1688-1697. 

[?I 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9l 

[ 101 hnp://klamath.stanford.edultools/SIM/ 

0-7803-8924-7/05/$20.00 (c>ZOOS IEEE. 72 


